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ABSTRACT 

In the last decade Internet computing has been revolutionized, to a large extent due to applications 

such as file sharing developed around the peer-to-peer computing paradigm. Peer-to-peer (P2P) net­

works are flexible distributed systems that allow nodes (called peers) to act as both clients and servers 

to access and provide services to each other. In order to fully utilize the commercial potential of P2P 

paradigm and to make it more attractive to Internet users, the existing services of P2P networks need 

to be enhanced. Besides data sharing, P2P networks can provide distributed processing capability, 

whereby multiple peers can form a virtual private processing network by contributing their individual 

resources, such as idle (otherwise wasted) computing power, disk space, etc. Moreover, most of the 

current research in P2P systems is based on a cooperative network model. It is generally assumed 

that although there can be some malicious nodes in a system, most of the nodes are trustworthy and 

follow the protocols as implemented by the network designer. For example, almost all the proposed 

P2P lookup protocols assume that peers sincerely follow the routing protocol and forward messages 

for other peers in the network. Furthermore, resources, such as data and bandwidth, are assumed to be 

freely available. Such altruistic behavior (i.e., cooperative routing and free data uploads) of the service 

providers may not hold as P2P networks gain prominence and are deployed over large public networks, 

such as Internet. 

Future P2P networks are likely to have no centralized administrative entity (owing to regulatory 

or scalability concerns) that control the nodes in the system. Therefore, it is important for network 

designers to take into account the independence and selfishness of P2P users to make the future systems 

more reliable and robust. Generally speaking, P2P network protocols need to be designed taking into 

account the fact that peers would behave selfishly to maximize their own interests or utility. The 

resources will generally be owned by different users or organizations that will not necessarily volunteer 
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to make them freely available, even when they are not being used. To provide the incentives for large-

scale resource sharing, resources need to be buyable and sellable, with the possibility of contracts that 

(at least in theory) can be enforced. 

A set of protocols are needed that range from ones that are very light-weight for small "micro-

value" transactions, to those that are more heavy-weight where enforceability (perhaps at a later time) 

is more important than efficiency. This will support the creation of a market economy of network-

accessible resources, including those that are specifically part of the network such as link bandwidth, 

and node processing and memory capacities. These resources would be purchased on demand, in very 

short periods of time, and for very short (and larger when necessary) periods of time. Users will rely 

more on buying the power in the network, only when and for how long they need it, rather than on 

relying solely on what is locally available. This will be more economical and offer the user more 

potential power. Moreover, market economic principles have been very successful in human societies 

for resource allocation, and therefore, we expect to derive similar benefits from computational resource 

economies built on top of P2P systems, as follows: To develop solutions for the above problems, we 

make the following contributions in this dissertation. 

1. We provide a solution for enabling distributed computing by harnessing idle computing re­

sources, such as CPU cycles, in P2P networks taking into account nodes' selfishness. 

2. We develop a mechanism for pricing and trading resources such as data and routing bandwidth 

in P2P networks. 

3. To increase users confidence to participate in the system, we develop a protocol for giving com­

plete participation anonymity to the users of a P2P system. We also propose a reputation manage­

ment framework for allowing users to evaluate the trustworthiness of each other before trading 

services/resources among themselves. The framework also implements a light-weight currency 

infrastructure that allows use of monetary incentive schemes for promoting cooperation among 

selfish users. 

4. We use game theory concepts to model and investigate the behavior of users in P2P systems. 
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CHAPTER 1. INTRODUCTION 

Unless you've been asleep at the wheel for the last nine months, you've heard of 

peer-to-peer (or P2P) computing. If you believe, as many do, that its use is limited to file 

sharing or that it is the most important development in the history of computing since the 

invention of the Internet, you can be forgiven - the hype generated by some of its more 

extreme proponents is to blame. In spite of the hype, P2P computing is important, and 

it's beginning to look like the paradigm with a large enough slice of mindshare to move a 

number of promising technologies from the wings into the limelight. 

http://www-106.ibm.com/developerworks/java/library/j-p2p/ 

One of the latest buzzword in our computing world is P2P the short form of Peer-to-Peer 

Computing. When the old-time favorite B2B and B2C companies are folding shops and 

venture funds are moving away from internet businesses, new players continue to crowd 

the P2P space and there seems to be no shortage of venture capitals willing to bet on this 

promising technology. 

http://www.theindianprogrammer.com/columns/pranab/p2p.htm 

In the last decade Internet computing has been revolutionized, to a large extent due to applications, 

such as file sharing, developed around the peer-to-peer paradigm. The basic idea behind the P2P 

computing is simple - two computing devices (peers) share their information and resources together. 

No device is client or server; each one of them act as mini-servers. P2P model allows any group of 

persons connected to the network to directly communicate with each other to exchange any digital 

product, for example MP3 music, plain texts, games, videos, eBooks, etc. 

P2P applications consist of a number of peers, each performing a specific role in the P2P net­

work, in communication with each other. Typically, the number of peers is large and the number of 
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different roles is small. Because of these two factors, P2P applications are characterized by massive 

parallelization in function. The best example is the Gnutella network, which consists of a large num­

ber of essentially identical peers. In developing P2P applications, the interesting problems lie in the 

interaction among peers and, to a lesser extent, in the peers themselves. 

Peer-to-peer computing did not spring into existence in its current form. Rather, it is the child of 

a number of different parents. First and most important, P2P computing is the natural result of decen­

tralizing trends in software engineering intersecting with available technology. From an engineering 

perspective, the trend over the last decade, driven by forces such as enterprise application integration, 

has clearly been away from monolithic systems and toward distributed systems. This trend was in­

hibited somewhat by the ease of managing centralized applications, but the growth of the Internet, 

followed by the rise in importance of business-to-business transactions, made full-scale distributed 

computing a business necessity. Intersecting this first trend is the second trend of the growth in the 

availability of powerful networked computers and inexpensive bandwidth. To be effective, P2P com­

puting requires the availability of numerous, interconnected peers. These two trends combined to form 

the perfect playground for P2P applications research. 

1.1 The Peer-to-Peer Paradigm 

The computing world is witnessing a paradigm shift from mainframes to client-server models, and 

now to peer-to-peer computing, as highlighted in Figure 1.1 

1970s and 1980s was the era of centralized computing, with IBM mainframe occupying over 70 

percent of the world's computer business. Business transactions, activities and database retrieval, 

queries, and maintenance were all performed by the omnipresent IBM mainframes. In 1990s, we 

witnessed transition towards client-server computing. The main emphasis of client-server architecture 

is to allow large applications to be split into smaller tasks and to perform the tasks among host (server 

machine) and desktops (client machines) in the network. Client machines usually manage the front-

end processes, such as GUIs (Graphical User Interfaces), dispatch requests to server programs, validate 

data entered by the user, etc. On the other hand, the server fulfill the client needs by performing the 

requested services. Typically a single server cater to the requirements of several (tens to thousands) 
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Mainframes 

(1970s-1980s) 
Peer-to-Peer 

(present) 

Client-Server 

(1990s) 

Figure 1.1 Evolution of computing systems. 

client machines. This introduced a single point of failure and a severe strain on the resources of a single 

machine. 

As the workstations and PCs became more powerful, and the Internet provided a powerful com­

munication medium, it was realized that one can do away with a single server architecture and instead 

exploit the virtually unlimited computing capabilities of millions of machines connected to the Internet 

and local networks. This gradually led to the evolution of peer-to-peer networks. This paradigm shift 

is depicted in Figure 1.1. 

Peer-to-peer (P2P) networks are flexible distributed systems that allow nodes (called peers) to act 

as both clients and servers to access and provide services to each other. P2P is a powerful emerging 

networking paradigm as it permits sharing of virtually unlimited data and computational resources in 

a completely distributed, fault-tolerant, scalable, and flexible manner. P2P systems can be used for 

various different purposes, such as distributed content management, distributed computing, etc. 

In a typical content distribution P2P system, each peer has some resource to share. These resources 

can be files, documents, web pages, etc. Each resource is uniquely identified by a key. For example, a 

key can be a URL for a web page or the filename for a document. Given the key of a resource, or a set 

of keywords that describe a group of acceptable resources, the objective is to design a system that will 
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locate resources in the system, and enable sharing with a minimum amount of communication, storage, 

and maintenance. 

At the application level, P2P systems form a decentralized overlay network with its own routing 

mechanism. Due to its decentralized nature, the topology of the overlay network and its routing mech­

anism determine the system properties, such as performance, robustness, and scalability. Different P2P 

protocols organize peers with varying degrees of structure, from loosely structured systems (called 

unstructured P2P networks), such as Gnutella [1] and Freenet [2], to highly structured ones (called 

structured P2P networks), such as Chord [3], CAN [4], Pastry [5], Tapestry [6], etc. In unstructured 

P2P systems, data are stored anywhere in the system and are located by broadcasting queries to all 

peers within a specific distance. These methods are simple and robust to accommodate changes in the 

overlay network topology. However, the inefficiency of broadcasting affects their scalability. On the 

other hand, in structured P2P systems network topology and data placement are carefully designed in 

order to support efficient and scalable searching. 

1.2 Evolution of Peer-to-Peer Systems 

In some sense, peer-to-peer systems dates as far back as the origin of Internet. The Internet as 

originally conceived in the late 1960s was a peer-to-peer system. The goal of the original ARPANET 

was to share computing resources. The challenge for this effort was to integrate different kinds of 

existing networks as well as future technologies with one common network architecture that would 

allow every host to be an equal player. The first few hosts on the ARPANET-UCLA, SRI, UCSB, and 

the University of Utah-were independent computing sites. The ARPANET connected them together 

not in a master/slave or client/server relationship, but as peers. 

The early Internet was also much more open and free than today's network. Firewalls were un­

known until the late 1980s. Generally, any two machines on the Internet could send packets to each 

other. The Net was an instrument for cooperative research. The protocols and systems were obscure 

and specialized enough that security break-ins were rare and generally harmless. Some of the earlier 

successful applications based on the peer-to-peer technology are USENET [7] and FidoNet [8]. 

USENET, born back in 1979, is the distributed application that provide newsgroups. Its earliest 
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incarnation was the work of two graduate students named Tom Truscott and Jim Ellis. At the time, 

nothing like the "on-demand" Internet we know today existed. Files were exchanged in batch over 

phone lines, often at night when long distance rates were lowest. Consequently, there was no effective 

way to centralize the function of the USENET. The natural result was an extremely decentralized, 

distributed application - a structure it retains to this day. 

The other outstanding early peer-to-peer success is FidoNet. FidoNet, like USENET, is a decentral­

ized, distributed application for exchanging messages. FidoNet was created in 1984 by Tom Jennings 

as a way to exchange messages between users of different BBS systems. Because it filled a need, it 

quickly grew and, like USENET, it remains in use today. 

As can be seen peer-to-peer computing is not all that new. The term "P2P" is, of course, a new 

invention, but the basic peer-to-peer technology has been around at least as long as USENET and 

FidoNet - two very successful, completely decentralized networks of peers. However, P2P networks 

as we understand them today came into emergence with the introduction of Napster system. 

In the following two subsections we describe various P2P systems categorizing them into two 

categories. We explain various designs that have been proposed for implementing P2P systems till 

date. 

1.2.1 First Generation Systems 

Napster [9] was the first publicly deployed peer-to-peer system. It used a central server to maintain 

an index of (filename, IP address) pairs, and kept track of the locations of all the music files in the 

system. When a user wanted a particular music file, it queried this server, and upon receiving the 

IP address(es) of the machine(s) that hosted the requested resource, it downloaded the file from that 

machine. The actual file transfer was independent of the central index server and just involved the two 

participating peers. The simplicity of Napster architecture partly contributed to its success and made it 

among the fastest growing software in Internet. 

One potential argument against the simple architectural approach of Napster is the lack of scala­

bility. Moreover, the setup of such systems may require considerable investment for high-performance 

machines (as index servers), high bandwidth, etc., which makes it unsuitable for implementing a peer-
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to-peer system. Furthermore, the approach is not fault-tolerant; the central server provides a single 

point of failure. This fact led to the ultimate demise of Napster as the legal authorities tracked, and 

eventually made the single entity that was responsible for the management of Napster to close down. 

Still, the tremendous success of Napster showed the power of P2P beyond doubt. 

The fall of Napster saw the emergence of several other systems, such as Gnutella [1], Freenet [2], 

and KaZaA [10]. Like Napster, Gnutella decentralizes not only the file transfer, but also the initial 

resource discovery by flooding the resource request. Also, Gnutella is not restricted to only music files, 

one can share any type of files using the Gnutella protocol. Gnutella builds a network in which each 

machine is connected to a few other machines, called the neighbors, in the network. In other words, 

each machine knows the IP addresses of its neighbors and can communicate with them. If a user 

requests a file, the request is forwarded to one's neighbors; the neighbors in turn ask their neighbors, 

and so on. This process continues until the desired resource is found or the request has propagated 

the pre-specified number of hops away from the requesting user. The resource (if found) is then sent 

along the reverse lookup path so that it reaches the intended recipient. It is easy to realize that, unlike 

Napster, the Gnutella model is difficult to shut down because of its completely decentralized nature. 

Gnutella is also an open source under the terms of the GNU public license. The problem with Gnutella 

architecture is that of the search time. The search may take longer as the community grows. This 

is because it creates an enormous volume of traffic in the network for each request. Moreover, it is 

possible to have a failed request despite the fact that the resource resides in the network (since the 

search diameter is bounded by a time-to-live value). 

KaZaA alleviates the problem of flooding traffic somewhat in practice by using super-peers. Super-

peers are selected for their larger capacity and greater capabilities from among the set of peers. This 

approach essentially creates a hierarchical overlay network, where the top layer consists of the super-

peers, and the bottom layer consists of the peers. All the resource requests are sent only to the super-

peers, each of which maintains an index of the resources hosted by its own group. If a resource is 

not found in its own group, a super-peer communicates with other super-peers to locate the requested 

resource. Although it alleviate some of the problems of flooding, this approach is still inherently un­

scalable. Flooding can be avoided, but with the additional cost of maintaining synchronized, distributed 
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indices among the super-peers. 

1.2.2 Second Generation Systems 

Several recent systems like Chord [3], CAN [4], Pastry [5], and Tapestry [6], Koorde [11], Broose 

[12], P-Grid [13], Symphony [14], Viceroy [15], Tappers [16] use a distributed hash table (DHT) as the 

basic data structure for a peer-to-peer system. The main operation of a DHT is to retrieve the identity 

of a node that hosts a particular resource, starting from any other node in the network. DHTs allow 

location of resources using a directory-like interface that supports storing and fetching data indexed 

by keys. The underlying theme of all these systems is that they build an overlay network on top of 

the physical network, and embed the machines in the overlay network by hashing their identifiers. 

Resource keys are distributed, either randomly or by hashing, among the nodes to facilitate uniform 

load distribution. As both machines and resources are embedded in the overlay network using hashing, 

these systems are called distributed hash tables. Each node is responsible for the resources (i.e., either 

store the resource value or the address of some node that has the resource value) that hash to locations 

near itself. 

The nodes are linked in the overlay network using a specific link distribution depending on the de­

sign. Resource location, using the overlay network, is done in these various systems by using different 

routing algorithms. Each node maintains some information about its neighbors, and routing is done 

greedily by forwarding messages to the neighbor closest to the target node. This inherent common 

structure leads to similar results for the performance of such networks; with n nodes in the network, 

most of these systems use 0(log n) space at each node, and take 0(log n) time for routing messages. 

1.2.3 Current Research Efforts 

Now we outline some of the major issues that the researchers in P2P community have primarily 

focussed on and addressed during the past few years. This gives the readers an insight into the trends in 

P2P computing research, and serves as a basis for us to provide the motivation for the research direction 

pursued in this dissertation. 
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Scalability: The Internet user community has grown to be so large that distributed systems need to 

cope with millions of users. In an ideal peer-to-peer system, the cost borne by each participant should 

not grow faster (in fact much less) than the size of the system. 

Load balancing: The cost of maintaining the system should be uniformly shared between all 

the peers. Similarly, the system should be able to manage high data request volume, when a particular 

resource becomes extremely popular for a short period of time. For example, the popular web site CNN 

(http://www.cnn.com) saw record traffic, hitting nine million page views an hour during the terrorist 

attacks on September 11, 2001 in New York, USA, compared to an ordinary volume of eleven million 

page views a day [17]. 

Dynamic maintenance: The massive parallelism in peer-to-peer systems, due to high rate of ma­

chine arrivals and departures, present some very challenging issues that are trivially solved in a system 

with fixed membership. The system should be self-configuring, and machines and resources should be 

added and removed from the system without manual intervention. 

Fault-tolerance: The overlay structure should be resilient to both machine and link failures in the 

system. Even if a part of the system has failed, the data available in the surviving machines should still 

be accessible, as long as it is located in the same connected component as the requesting peer. Further, 

the system should gracefully degrade in performance with increasing failures. 

Self-stabilization: Not only should the system survive disruptions due to failures, but it should 

also heal automatically to restore ideal performance. The system should have a repair mechanism 

that detects local inconsistencies, such as machine failures or link outages, and triggers maintenance 

operations with minimal overhead in terms of network traffic. 

Efficient searching: The primary goal of a peer-to-peer system is to locate resources efficiently, 

and hence support for searching using a variety of specifications is a very desirable property. Complex 

queries to locate resources, such as range queries, near matches to a key, and keyword matches should 

be supported by a rich query language. 

Security: The system should be secure against attacks, such as a denial-of-service (DoS) attack, 

where some miscreant participants may flood the system, thereby preventing legitimate traffic. In 

some applications, it may also be desirable to maintain anonymity of the users, or provide resistance to 

http://www.cnn.com
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censorship by preventing certain data items from being deleted from the system. 

Topologically sensitive construction: Routing should be sensitive to network locality, such as 

distance travelled, or latency along transmission paths. Two possible approaches are - a) Proximity 

routing - machines are placed in the overlay network to exploit the underlying topology, and b) Prox­

imity neighbor selection - the closest neighbor (as per the proximity metric) is chosen among the set of 

potential neighbors. 

1.2.4 Future Requirements 

Almost all the current (deployed or proposed) P2P systems are used primarily for data/file sharing. 

Although, it is widely acknowledged that other resources, like compute power can also be shared using 

the P2P paradigm, research in this regard is still underway. SETI@Home [18] comes close to sharing 

spare computing power (in the form of idle CPU cycles) of computers in a network. However, the 

model employed is still quite centralized. This is because SETI@home allows only a single server to 

make requests and use idle processing power of other computers in the network. The same capability is 

not available to all the participants of the SETI@Home network. Other research implementations such 

as CPS [19] and PAST [20] build large-scale distributed file systems on top of Chord [3] and Pastry 

[5], respectively. However, the needed processing is still performed by the clients after procuring the 

needed data. 

In order to fully utilize the commercial potential of the P2P paradigm and to make them more 

attractive to Internet users, we believe that the existing services of P2P networks need to be enhanced. 

Besides data sharing, P2P networks can provide distributed processing capabilities, whereby multiple 

peers form a virtual private processing network by contributing their individual resources, such as idle 

(otherwise wasted) computing power. 

Moreover, most of the current research in P2P systems is based on a cooperative network model. 

It is generally assumed that although there can be some rogue (malicious) nodes in a system, most 

of the nodes are trustworthy and follow the protocols as implemented by the network designer. For 

example, almost all the proposed P2P lookup protocols assume that peers sincerely follow the routing 

protocol and forward messages for other peers in the network. Future P2P networks are likely to have 
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no centralized administrative entity (due to scalability concerns) that control the users in the system. 

Therefore, it is important for network designers to take into account the independence and selfishness 

of P2P users, in order to make the future systems reliable and robust. In fact, as pointed out in [23], 

"selfishness" is one of the main threats that can be expected to be faced in a deployed P2P system. 

Below is what the author of [23] says -

"... Mojo Nation's experience shows that there are two kinds of attack that are likely to be encoun­

tered by any network that is deployed in a large scale on the Internet. The first attack is when a user 

alters his client in the attempt to gain more advantage for himself. Several different users have made 

such modifications to their Mojo Nation software and then helpfully contacted us to describe what they 

did. Other users have made modifications, but we are aware of those changes only indirectly through 

observations of anomalous behavior..." 

In some sense allowing users to act so as to maximize their own interests benefits the system as a 

whole; it allows for truly decentralized control and freedom for innovation - new users with new kinds 

of behavior and capabilities may enter the network. Generally speaking, P2P network protocols need 

to be designed taking into account the fact that peers would behave selfishly to maximize their own 

interests or utilities. The resulting protocols would be robust, fault-tolerant, and minimize free-riding. 

Furthermore, resources, such as data and routing bandwidth, are assumed to be freely available. 

This assumption is inherent in the design of most of the current P2P networks, where one obtain 

services from others without having to pay any reward to the service provider. Such altruistic behavior, 

i.e., cooperative routing and free data uploads of the service providers, is not correct to assume as P2P 

networks gain prominence and are deployed over large public networks, such as the Internet. It has 

been pointed out that free-riding [21, 22] is one of the most significant problems being faced by today's 

P2P networks. It was found that 70 percent of the Gnutella users share no files and 50 percent of all 

responses are returned by the top one percent of sharing hosts [21]. Uncontrolled or too much free-

riding leads to the degradation of system performance and adds vulnerability to the system. In order to 

avoid free-riding and achieve efficient allocation of resources (such as data, processing power, routing 

messages, etc.) made available by the P2P systems, we believe that the sharing of resources must be 

based on suitable economic models. The models employed should be scalable and have minimum (or 
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no) requirement for any trusted and/or centralized entity. 

Thus, although the issues described in Section 1.2.3 are critical for the feasibility and wide-spread 

deployment of the P2P systems, we believe that the capability for providing novel services (such as 

distributed computing), and taming the selfishness of individual users using market economic models 

would go a long way in fulfilling what the P2P paradigm promises to be. 

1.3 Problem Statement and Organization of the Dissertation 

Based on the issues identified above, the problems addressed in this dissertation consist of two 

primary components. 

Problem 1 : Provide a solution for enabling distributed computing by harnessing idle computing 

resources, such as CPU cycles, in P2P networks taking into account nodes' selfishness. 

Problem 2: Develop a mechanism such that resources like data and routing bandwidth can be priced 

and traded in P2P networks. 

1.3.1 Summary of the Chapters 

Chapter 2 presents the system model used in this dissertation. 

Chapter 3 presents CompuP2P, which is an architecture for distributed computing that facilitates 

trading of computing resources, taking into account nodes' selfishness, in dynamically created markets. 

Chapter 4 proposes a unified incentive strategy that motivate intermediate nodes to route lookup 

requests and server nodes to share their data objects with others. Since, downloading a data item incurs 

a cost, the proposed strategy is an effective solution for dealing with the free-riding problem prevalent 

in P2P networks. 

Chapter 5 proposes a reputation management framework for large-scale P2P systems. The frame­

work assumes that every node behaves selfishly, and in addition there might be malicious nodes in the 

system. The proposed framework can also be used to implement a system of virtual currency by using 

reputation as a measure of nodes' wealth. This has tremendous potential as it obviates the need for an 

electronic payment infrastructure, and thus make the resulting system truly distributed and inexpensive. 
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Chapter 6 uses game theory to model the behavior of nodes in a P2P system and derives the Nash 

equilibrium of the underlying system. The derived Nash equilibrium addresses the problem of free-

riding, since it shows that the best strategy for nodes is to probabilistically share their resources with 

others. 

Chapter 7 presents a novel protocol for providing anonymity in P2P networks. The protocol is 

inherently anonymous, light-weight, and incentive-compatible. Incentive compatibility implies that the 

protocol takes into account the selfishness of users; as we would see the utilities of users are maximized 

by truthfully following the protocol steps. Moreover, unlike other schemes, the proposed protocol does 

not rely on any trusted centralized entity or require specialized encryptions to be performed by the 

users. Thus, the protocol incurs very low overhead on the system and is light-weight. 

Chapter 8 summarizes and discusses some open issues for further research. 
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CHAPTER 2. SYSTEM MODEL 

2.1 Overview 

In this chapter we describe the system model used in this dissertation. However, if some additional 

assumptions are needed to the model to take into account the specific limitations of some of the pro­

posed solutions, then those assumptions are described in the chapters where the respective solutions 

are presented. 

Our system model is inspired by the principles of algorithm mechanism design and is analogous to 

the model presented by Nisan et. al. in [24]. Below we provide an introduction to the model developed 

in [24], which also provides a definition of algorithm mechanism design. 

2.1.1 Model for Selfish Agents By Nisan et. al. 

The view taken in the paper is that of a system's engineer that has certain technical goals for the 

global behavior of the network. The authors view the selfishness of the participants as an obstacle 

to such a goal that can be overcome by way of trade and payments. In economic terms, the desire 

is to develop a virtual managed economy of all network resources, but due to the selfishness of the 

participants one is forced to obtain it using the invisible hand of free markets. Therefore, the goal is to 

design the market rules as to ensure the desired global behavior. 

The model presented allows studying these types of issues. The model relies on the rationality of 

the participants and is game-theoretic in nature. Specifically, it is based upon the theory of mechanism 

design [32]. The field of mechanism design aims to study how privately known preferences of many 

people can be aggregated towards a "social choice". One of the motivations to use mechanism design to 

solve computational problems is to deal with situations involving the differing goals of the participants. 

The model is concerned with computing functions that depend on inputs that are distributed among 
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N different agents. A problem in this model has, in addition to the specifications of the function to 

be computed, a specification of the goals of each of the agents. The solution, termed a mechanism, 

includes, in addition to an algorithm computing the function, payments to be handed out to the agents. 

These payments are intended to motivate the agents to behave correctly. A mechanism solves a given 

problem by assuring that the required outcome occurs, when agents choose their strategies as to maxi­

mize their own selfish utilities. A mechanism needs thus to ensure that players' utilities (which it can 

influence by handing out payments) are compatible with the algorithm. 

More formally, the mechanism design problem and its solution (called a mechanism) are defined 

as follows: 

Definition 1. A mechanism design problem is given by an output specification and by a set of agent's 

utilities. Specifically: 

• Each of the N agents, say agent i has a private input value tl G Tl (termed as the type of an 

agent). 

• The output specification gives a set of outcomes ofor every combination of agents' types. 

• An agent attaches a valuation (vl) to every outcome and the total utility of an agent (u1) is the 

sum ofv1 and the payment (pl) that it receives from the mechanism because of that outcome. 

The model studies only optimization problems. In these problems the outcome specification is to 

optimize a given objective function. More formally, the outcome specification is given by a positive 

real-valued objective function g(o,t) and a set of feasible outcomes F. The required output is the 

outcome o € F that minimizes g. 

Definition 2. A mechanism m = (o,p) is composed of two elements: an outcome o for the given set of 

actions of the participants, and an N-tuple payments p1... pN. Specifically: 

• The mechanism defines for each agent a set of strategies from which it can choose its action. 

• The mechanism provides an outcome based on the set of actions of the participants. 

• The mechanism provides a payment to the participants based on the outcome derived above. 
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• The mechanism is an implementation with dominant strategies, if for each possible set of domi­

nant strategies (in a game-theoretic sense) of the participants, the outcome satisfies the specifi­

cation. 

The simplest types of mechanisms are those in which the agents' strategies are to simply report their 

types. Further, if for a problem there is a mechanism designed to handle the dominant strategies of the 

participants, then one can also come up with a mechanism, which provides that truthfully revealing the 

input type is the best strategy for the participants. 

2.1.2 Model Details 

We assume a peer-to-peer network (either structured or unstructured) given by G  =  ( V , E ) .  V  is 

the set of nodes or peers and is given by V = {711,712,. -., n,v}. Flere N(= |K|) is the set size or 

total number of peers in the network. (We use the terms nodes, peers, and users interchangeably in this 

dissertation). The edges in set E are bi-directional and represent the neighbor relation between pair 

of nodes, i.e., we have e^- G E if and only if nodes nt and rij are neighbors in the overlay network. 

M{ni) represent the neighbors of a node, say n,, and is given by _A/(ri,;) = {n]\clj G E, Vj}. 

The network is dynamic as peers join and leave at unpredictable times. We assume that each node 

has a unique public-private key pair and the public key of any node can securely be obtained by using 

its IP address. 

Message communication is reliable, i.e., a message sent is received by the intended receiver in 

bounded time without any distortion. This assumption is made so as to simplify the description of the 

proposed protocols. If a network is not reliable, then message loss can be detected by setting suitable 

timeout values at the receivers. The sender is then assumed to have failed or left the network. 

Nodes, are autonomous rational agents in a game-theoretic sense. By autonomous we mean that 

nodes are completely free to choose their actions. The goal of the rational agents in a game is to 

maximize their utilities (or profits) during each network transaction (or a game). The profit from a 

transaction is equal to the difference between the reward that a node earns and the cost that it incurs 

by participating in the transaction. Nodes participate in a transaction if there is a potential of making 

profit in future. 
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The reward can be anything that is deemed to have value, the possession of which adds to a node's 

utility. (The terms money, currency, and reward should be understood to mean the same thing). For sim­

plicity, we assume that rewards are electronically processed and a secure payment mechanism among 

peers is in place [25, 26, 27, 28, 30, 29, 31]. The cost in the form of bandwidth, memory, etc., that 

a node x incurs by participating in a transaction is referred to as its marginal cost MCX. The term 

"marginal" reflects the fact that this cost value is for a given transaction and represents the additional 

work that a node has to do for participating in the transaction. The cost incurred by a node increases in 

proportion to the amount of traffic it is currently handling, and any request offering less than its current 

marginal cost is not fulfilled. 

A transaction is any event wherein some peer requests service from the network. 

The definition of a service can include anything from sharing data, compute power to routing 

messages, etc. We say that a transaction t is an instance of some service, say S. For example, for 

service S equal to music file sharing, the lookup process initiated by a peer to download a music file 

corresponds to a transaction. (The lookup process refers to the process of searching for and obtaining 

a desired resource). 

There is a well-defined protocol, denoted by P$, for carrying out service S. P$ is designed such 

t h a t  i t  s a t i s f y  t h e  g o a l s  ( G s )  a s s o c i a t e d  w i t h  t h e  s u c c e s s f u l  c o m p l e t i o n  o f  s e r v i c e  S .  

Each transaction is a game among the participating peers. The outcome of the game determines the 

increase in each peer's utility. The rules of the game are specified by Pg. If it can be proven that any 

peer(s) did not follow the rules in Ps, it (they) can be punished. We assume that there is a punishment 

mechanism in place, and nodes prefer not to get punished as compared to any other outcome of the 

game. In an enterprise computing environment there might be a central authority one can report to in 

order to identify and punish the cheating node. For large-scale open systems one can use reputation 

mechanisms to ensure that cheating nodes are identified and prevented from receiving any service in 

future. 

Our approach: The way we address the problems - Problem 1 and Problem 2, is by designing Ps, 

such that each transaction not only satisfies Gs, but also maximizes each node's expected utility at the 

same time. 
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Our approach is a distributed implementation of the mechanism described in the previous subsec­

tion. This is because our solutions require that it is in nodes' best interest to report their true marginal 

costs while participating in a transaction. Moreover, the collection of input values (i.e., marginal costs) 

and handing out of rewards to nodes is done in a distributed manner rather than by some centralized 

entity. 
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CHAPTER 3. "CompuP2P": AN ARCHITECTURE FOR DISTRIBUTED 

COMPUTING IN INTERNET-SCALE PEER-TO-PEER NETWORKS 

3.1 Overview 

The idea of a "network computing" system is gaining popularity over more traditional ones like 

high-performance multiprocessors and supercomputers. This is due to increased scalable cumulative 

power, more efficient (and economical) use of existing resources, and more effective system man­

agement. Ultimately, large economies of scale are achievable by the ability to arbitrarily deliver and 

redirect the shared power of the network to any user, in contrast to today's systems where power is 

essentially statically distributed and preallocated, and not shared. 

CompuP2P is an architecture for enabling distributed computing in Internet-scale peer-to-peer net­

works. It provide resources, such as processing power, disk space, etc., of millions of PCs and work­

stations that have Internet connectivity and are under-utilized most of the time to user applications that 

might require them. For example, such a system can perform compute intensive tasks on behalf of 

clients, such as wireless devices (e.g. PDAs) with limited battery and processing power. Applications, 

like scientific simulations and data mining, requiring large processing power, can tremendously benefit 

from potentially unlimited availability of compute power provided by CompuP2P. Likewise, database 

applications, requiring huge storage, can harness the disk capacity of virtually millions of machines 

connected to the Internet. We believe that while the Internet currently cannot hope to serve as a totally 

general-purpose efficient parallel computer, it can still serve as an excellent platform with unlimited 

computational resources for solving a wide variety of computational problems. We sketch some of 

these application in Section 3.6.2. 

At present, P2P networks, such as KaZaA [10], Gnutella [1], etc., are used primarily for data 

sharing. Although, it is widely acknowledged that other resources, like compute power, can also be 
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shared using a P2P paradigm, research in this regard is still underway. SETI@home [18] comes close 

to sharing computing power (in the form of idle CPU cycles) of computers connected to the Internet. 

However, the model employed is still quite centralized. This is because SETI@home allows only a 

single server to make requests and use idle processing power of other computers in the network. The 

same capability is not available to all the participants of the SETI@home network. On the other hand, 

CompuP2P enable all the users to harness almost unlimited computing resources of the entire network. 

The prospect of harnessing a significant fraction of network resources to execute a distributed 

application is very appealing. These resources can be purchased on demand, in very short periods 

of time, and for very short (and larger when necessary) periods of time. Resources will generally be 

owned by different users that will not necessarily volunteer to make them freely available, even when 

they are not being used. To provide the incentives for large-scale resource sharing, resources need to 

be buyable and sellable, with the possibility of contracts that (at least in theory) can be enforced. 

To meet the above requirements, CompuP2P use light-weight protocols for building and operating 

dynamic computing resource markets, where sellers and buyers can come together to negotiate transfer 

(usage) of resources from seller to buyer nodes. The lookup of such markets and the availability of 

resources are robust even in the face of several nodes entering or leaving the network at the same 

time. CompuP2P use ideas from game theory [52] and microeconomics [53] to devise incentive-based 

schemes for motivating peers to share their idle computing resources with each other. The trading 

and pricing of resources is done in a completely distributed manner without requiring any trusted 

centralized authority to oversee the transactions. 

For concreteness, in this chapter we use compute power as the resource under consideration, how­

ever, the mechanisms for market creation and resource pricing are equally applicable to any other kind 

of resource, such as disk space, etc. 

3.2 Related Research 

In this section we discuss some well-known projects that aim to harness the idle processing capacity 

in distributed systems. Almost all of these projects are based on grid computing and employ several 

centralized and/or trusted components for their task distribution and resource management. We also 
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compare them to our proposed CompuP2P architecture. 

3.2.1 Condor [33] 

Work on Condor was started in 1988 by the Computer Sciences Department at the University 

of Wisconsin-Madison with the aim of developing a general-purpose framework that would allow 

the use of idle CPU cycles for research purposes. Condor is designed to support the execution of 

independent tasks following the SPMD (single process multiple data) model. It provides a flexible 

platform-independent framework for distributing jobs (tasks) over a pool of machines (peers) by pro­

viding a basic job queuing mechanism, scheduling policies, priority schémas and resource monitoring 

and management. It is built on the principle of distributing batch jobs around a loosely coupled cluster 

of computer to enable a high-throughput computing (HTC) system. 

Users submit their serial or parallel tasks to Condor in form of jobs. The Condor matchmaker places 

them into a queue, chooses when and where to run them based on job needs, machine capabilities and 

usage policies. Condor monitors the progress of jobs and informs the user upon completion of their 

jobs. Condor uses a variety of different concepts to ensure fast and safe execution of jobs. 

To protect the host, all jobs are executed in a restrictive sandbox that prevents/intercepts invoking 

any system calls. Only remote system calls are permitted since they will be executed on the host of the 

job's owner. In addition to this Condor supports strong authentication, encryption, integrity assurance, 

as well as authorization. 

Condor harvests the otherwise wasted CPU power of desktops, workstations, servers and clusters. 

Condor is designed primarily for SPMD, but also supports MPMD (multiple process multiple data). 

Condor also has a large number of inter-job communication libraries, e.g. MPI [35]. 

Task management is centralized and ensures that jobs are executed in an efficient and secure manner 

based on the specified requirements of provider and consumer. However, a consumer has little control 

over the location and manner in which its job is executed. 
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3.2.2 Entropia [34] 

Entropia is a commercial product, and is sold as part of Entropia's DCGrid enterprise solution 

(www.entropia.com). It was designed at the beginning of 2000, and completed by the middle of 2001. 

Entropia has been deployed as an enterprise desktop grid [37] at more then a dozen commercial sites, 

and used for more than 50 applications. Since the majority of desktops are Windows x86 machines, 

Entropia focuses purely on providing a Windows x86-based solution, supporting three generations of 

Windows operating systems NT, 2000, and XP. 

The Entropia system aggregates the raw desktop resources into a single logical resource. This 

logical resource is reliable, secure, and predictable despite the fact that the underlying raw resources 

are unreliable (machines may be turned off or rebooted), insecure (untrusted users may have electronic 

or physical access to machines), and unpredictable (machines may be heavily used by the desktop user 

at any time). This logical resource provides high performance for applications through parallelism 

while always respecting the desktop user and his or her use of the desktop machine. Furthermore, the 

logical resources are managed from a single administrative console. Addition or removal of desktop 

machines from the Entropia system is easily achieved, providing a simple mechanism to scale the 

system as the organization grows or as the need for computational cycles grows. 

The Entropia system architecture is composed of three separate layers. At the bottom is the Phys­

ical Node Management layer that provides basic communication and naming, security, resource man­

agement, and application control. On top of this layer is the Resource Scheduling layer that pro­

vides resource matching, scheduling, and fault-tolerance. Users can interact directly with the Resource 

Scheduling layer through the available APIs or alternatively, users can access the system through the 

Job Management layer that provides management facilities for handling large number of computations 

and files. 

To support the execution of a large number of applications, and to support the execution in a 

secure manner, Entropia consist of three main components - Desktop Control, Sandbox, Application 

Security. Entropia uses a light-weight interface which mediates between the application processes and 

the operating system. This mediation is used to control the application behavior, and hook in other 

parts of the security system. It also uses an external process on the desktop machine, which is called 

http://www.entropia.com
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the Desktop Controller. To monitor and control all of the application processes and threads running on 

the machine, Entropia uses the mediation to implement a sandbox which manages the execution of the 

application so that it can do no harm to the PC and so that it leaves the desktop PC in the same state 

as before the system was run. The application security is provided through a combination of a device 

driver, Information Technology support and automated file encryption. Creating a system to run native 

binaries under a virtual machine provides a key advantage, which is the ease of application integration 

to enable an application to run on the system. 

Unlike Condor and Entropia, CompuP2P is completely decentralized, in the sense that there is no 

centralized entity that monitors system state and assign (sub)tasks accordingly to different machines. 

CompuP2P use microeconomic principles and game-theoretic ideas to govern trading and allocation of 

compute power to tasks. 

3.2.3 Spawn [36] 

At a very high level of description, Spawn is organized as a market economy composed of in­

teracting buyers and sellers. The commodities in this economy are computer processing resources; 

specifically slices of CPU time on various types of computer workstations in a distributed computa­

tional environment. 

Buyers are users who wish to purchase time in order to perform some computation. Sellers are 

users who wish to sell unused, otherwise wasted processing time on their computer workstations. A 

buyer can be a scientist who wants to run a large, concurrent Monte-Carlo simulation. A typical seller 

is a user who is not actively using his personal workstation. A seller executes an auction process to 

manage the sale of his workstation's processing resources, and a buyer executes an application that 

bids for time on nearby auctions and manages its use of computer processing resources. In the Spawn 

economy, monetary funds encapsulate resource rights, and price equates the supply and demand of 

processing resources. 

Spawn is meant to be used in relatively small single-site distributed networks organized as a clus­

ter. On the other hand, CompuP2P is designed to run in large geographically dispersed networks. In 

Spawn all the CPU cycle auctions are homogeneous and a bidder is indifferent to which node provides 
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the necessary computing power for processing its tasks, whereas CompuP2P create different compute 

power markets and sellers lookup a specific market that can fulfill its processing requirements. Since, 

nodes in a P2P network can be far apart from each other, buyers in CompuP2P are also sensitive to 

the physical location of the sellers and try to minimize the time it takes to finish the entire compu­

tation. The central concern in Spawn is to ensure fair allocation of idle resources among concurrent 

applications and not locating and trading available compute power in a large Internet scale network. 

3.2.4 POPCORN [38] 

POPCORN enables any programmer on the Internet with a simple virtual parallel computer. This 

virtual machine is implemented by utilizing all processors on the Internet that care to participate at any 

given moment. In order to motivate this participation, a market based payment mechanism for CPU-

time is employed. The system is implemented in Java and relies on its ubiquitous applet mechanism 

for enabling wide scale safe participation of remote processors. 

The POPCORN programming paradigm, used by the buyer program, achieves parallelism by con­

currently spawning off many sub-computations, termed computelets. The POPCORN system automat­

ically sends these computelets to a market (chosen by the user), which then forwards them to connected 

CPU-time sellers who execute them and return the results. The matching of buyers and sellers in the 

market is dynamic, is done according to economic mechanisms, and results in a payment of the buyer 

to the seller. 

The system is intended for coarse-grained parallelism. The efficiency is mostly determined by the 

ratio between the computation time of computelets to the communication effort needed to send them 

and handle the overhead. To achieve high efficiency, computelets should be relatively heavy in terms 

of computation time. 

POPCORN provides an infrastructure for globally distributed computation over the whole Internet 

and uses a market-based mechanism to trade CPU cycles. However, POPCORN uses a trusted, cen­

tralized market that serves as a matchmaker between the seller and buyer nodes. On the other hand, 

markets in CompuP2P are distributed and dynamically created. Moreover, the market owners them­

selves are assumed to be selfish, which is a reasonable assumption in large Internet-scale systems with 
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no pre-trusted entities. 

3.2.5 SETI@Home [18] 

SETI (the Search for Extraterrestrial Intelligence) is a collection of research projects aimed at 

discovering alien civilizations using radio telescopes. Since the analysis of the extensive radio telescope 

data (about 35GB per day) requires significant computing resources, a P2P approach for distributed 

computing was chosen. SETI@Home engages Internet users around the world in the effort of the 

distributed signal analysis. 

SETI @ Home server divides the data into chunks (work-unit) designed for an average desktop 

computer. Participating peers contact the server and download a chunk of data. After downloading 

the peer starts processing the data in its idle time, e.g. when the screen-saver is active. The result of 

the analysis is sent back to the central server and a new cycle of requesting data, processing data and 

reporting results begins. 

The tasks in SETI@Home are independent and can be executed without the need of any connection. 

Network connectivity is only needed for receiving data and sending results. The peer data - including 

the number of work units completed, time of last connection, and team membership - are reported on 

web-sites allowing users to compete for the biggest CPU contributions. 

SETI @ Home uses a check-pointing mechanism to recover from inadvertent host or network fail­

ures. SETI @ Home also injects "test signals" intentionally into the system to confirm that the hardware 

and software is working properly. The "suspicious" responses to work unit or the lack of reported 

results is recorded and used in evaluating the level of trust assigned to the peer. 

SETI @ Home is limited to SPMD problems and offers no communication support (except for re­

questing data and sending results). Hiding the details of the communication protocols, i.e., requiring 

that users install SETI @ Home software prior to joining the network and avoiding any code migration 

provides basic security. SETI @ Home uses redundancy and tests data to ensure correct processing and 

flags suspicious peers. Due to the large number of freely available computing resources no efforts for 

optimizing the execution of tasks is carried out. 

In SETI @ Home only one central server can allocate tasks to others, whereas the goal of Com-
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puP2P is to enable all the peers to purchase computing power and distribute their workload onto other 

machines in the network. Thus, in this regard CompuP2P is a more flexible and powerful distributed 

processing paradigm. 

The projects described above (including some other, such as [39, 40]), with the exception of 

SETI@ Home and POPCORN, are based on grid computing, rather than true peer-to-peer comput­

ing. Nodes in these grid-based systems are under direct control of some form of centralized controllers. 

These centralized controllers have complete system information and schedule tasks onto multiple nodes 

after matching client requests with the resource capabilities of existing nodes. Moreover, selfishness of 

nodes is not an issue in these systems. On the other hand, although SETI@Home does not impose any 

direct control over the network nodes that agree to process sub-tasks, still the underlying architecture 

is quite centralized as only one node (SETI @ Home server) can request others to perform tasks on its 

behalf. Also, POPCORN relies on a trusted centralized markets to enable matching and transfer of 

processing tasks from the client to server machines. 

3.3 Model Assumptions 

The network model uses Chord [3] for addressing and nodes' connectivity. We provide a brief 

description of the Chord protocol in Section 3.4. Although CompuP2P uses Chord as the underly­

ing protocol, its architecture is generalized enough, such that with little modifications it can also be 

employed in other structured P2P networks such as CAN [4]. 

Typically in a network there are peers (called computing nodes or sellers) that may have idle com­

puting resources available for executing tasks on behalf of other peers (called clients or buyers). We 

assume that nodes executing tasks get suitably compensated by the clients. Moreover, nodes behave 

selfishly and the only way for nodes to maximize their payoffs is by selling their idle computing re­

sources to others that may require them. To simplify our discussion here, we do not explicitly consider 

compensating nodes for their data, however, in the next chapter we propose a distributed pricing strat­

egy such that data can also be traded among nodes in a P2P network. 

Now we discuss how Problem 1 mentioned in Chapter 1 is dealt with by the CompuP2P architec­
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ture. 

3.3.1 Problem Formulation 

Service type (S): Utilizing idle computing resources in P2P networks. 

Problem Definition: Provide a solution for harnessing idle computing resources, such as trading 

raw CPU power, in P2P networks taking into account nodes' selfishness. 

Service Goals (Gs)'- We identify the following objectives for the service type defined above. 

1. Nodes must be motivated to share their idle computing capacities with others. 

2. A client (with sufficient funds) should always be able to locate a computing node and send its 

task(s) for remote execution, as long as the compute power requirement of the task(s) is smaller 

or equal in value to the existing idle capacity of some computing node(s) in the network. 

3. Truth-telling, with regards to the marginal cost of providing compute power, should be the best 

strategy for the computing nodes. 

4. Among all the available computing nodes, the one with the lowest marginal cost should be se­

lected. 

5. Payoffs received by nodes should be greater than their marginal cost of providing service. 

6. A client should not be charged an arbitrarily high price for its task execution. 

In the following section, we define protocol P$ for service S. Ps include the mechanisms for 

creation of computing resources markets and pricing strategies for trading of computing resources in 

those markets. 

3.4 Chord Overview 

Chord supports just one operation: given a key, it determines the node responsible for that key. 

Each Chord node has a unique m-bit identifier (ID), obtained by hashing the node's IP address. Chord 

views the IDs as occupying a circular identifier space. Keys are also mapped into this ID space, by 
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Figure 3.1 Mapping of keys to nodes in Chord. 

hashing them to m-bit key IDs. We will use the term "key" to refer to both the original key and its image 

under the hash function, as its meaning will be clear from the context. Similarly, the term "node" refers 

to both the node and its identifier under the hash function. 

Chord defines the node responsible for a key to be the successor of that key's ID. The successor of 

an ID j is the node with the smallest ID that is greater than or equal to j (with wrap-around), much as 

in consistent hashing [41]. A pictorial representation of a Chord network is given in Figure 3.1. 

Consistent hashing lets nodes enter and leave the network with minimal movement of keys. To 

maintain correct successor mappings when a node rii joins the network, certain keys previously as­

signed to ni s successor become assigned to n,. When node n,; leaves the network, all of rt,'s assigned 

keys are reassigned to its successor. No other changes in the assignment of keys to nodes need occur. 

Also, consistent hashing does a good job of load balancing keys onto nodes. Intuitively, this follows 

since the use of an appropriate hash function means that node and key identifiers can be treated as 

independent, uniformly distributed random points on the circle. Consistent hashing is straightforward 

to implement, with constant time lookups, if all the nodes have an up-to-date list of all other nodes. 

However, such a system does not scale. Chord provides a scalable, distributed version of consistent 

hashing. 

A Chord node uses two data structures to perform lookups - a successor list and a finger table. 
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Only the successor list is required for correctness, so Chord is careful to maintain its accuracy. The 

finger table accelerates lookups, but does not need to be accurate, so Chord is less aggressive about 

maintaining it. The following discussion first describes how to perform correct (but slow) lookups with 

the successor list, and then describes an accelerate technique using a concept called finger table. 

Every Chord node maintains a list of the identities and IP addresses of its r immediate successors 

on the Chord ring. The fact that every node knows its own successor means that a node can always 

process a lookup correctly - if the desired key is between the node and its successor, the latter node is 

the key's successor; otherwise the lookup can be forwarded to the successor, which moves the lookup 

strictly closer to its destination. 

A new node n learns of its successors when it first joins the Chord ring, by asking an existing node 

to perform a lookup for n's successor; n then asks that successor for its successor list. The r entries 

in the list provide fault-tolerance - if a node's immediate successor does not respond, the node can 

substitute the second entry in its successor list. All r successors would have to simultaneously fail in 

order to disrupt the Chord ring, an event that can be made very improbable with modest values of r. 

An implementation should use a fixed r, chosen to be 21og2 N for the foreseeable maximum number 

of nodes N. 

The main complexity involved with successor lists is in notifying an existing node when a new node 

should be its successor. The stabilization procedure described in [3] does this in a way that guarantees 

to preserve the connectivity of the Chord ring's successor pointers. 

Lookups performed only with successor lists require an average of N / 2  message exchanges. To 

r educe the number of messages required to 0(log N), each node maintains a finger table with m entries. 

The ith entry in the table at node n contains the identity of the first node that succeeds n by at least 

a distance of 2'~1 on the ID circle. Thus every node knows the identities of nodes at power-of-two 

intervals on the ID circle from its own position. A new node initializes its finger table by querying an 

existing node. Existing nodes whose finger table or successor list entries should refer to the new node 

find out about it by periodic lookups. 

The following two theorems, given in [3], show that neither the success nor the performance of 

Chord lookups is likely to be affected even by massive simultaneous failures. Both theorems assume 
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that the successor list has length r = 0(log N). A Chord ring is stable if every node's successor list is 

correct. 

Theorem 1. In a network that is initially stable, if every node then fails with probability 1/2, then with 

high probability the search for a successor returns the closest living successor to the query key. 

Theorem 2. In a network that is initially stable, if every node then fails with probability 1/2, then the 

expected time to find a successor is 0(log N). 

3.5 Markets for Trading of Computing Resources 

We now explain how nodes in CompuP2P, possibly across different administrative domains, can 

share their idle computing resources, specifically compute power. Each node based on its current and 

past load estimates the average number of CPU cycles that would remain idle in future.1 Suppose a 

node determines that it has C cycles/sec available for the next T time units (where T is some large 

enough time period) that it can provide or make available to others for processing.2 These available 

CPU cycles can be time shared across multiple tasks, as long as the sum of the requirements of all the 

tasks do not exceed C. For example, if C is equal to 105 cycles/sec, then a node can execute a task 

that needs at most 105 cycles/sec, or if there is no such single task, the processing power may be time-

shared among multiple tasks given that the total requirements of the tasks do not exceed 105 cycles/sec. 

It must be noted that the same value of number of CPU cycles/sec might represent different amounts 

of compute power for different nodes. This might happen if nodes have different hardware and/or 

software configurations. We use the unit of cycles/sec to represent normalized equivalent amounts of 

compute power at different nodes in a heterogeneous system. 

Once the amount of idle computing resources has been estimated, the next step is to determine how 

to sell them. Moreover, buyers needing extra computing resources should be able to locate the right 

sellers and purchase the resources from them. The related and equally important issue is how the sellers 

should price their resources in order to maximize their profits. In the next subsection, we first describe 

'For example, by using information from Unix commands, such as "top" and "uptime". 
"In case some other resource, say disk space, is under consideration then we would use another appropriate unit, like G 

gigabytes for T time units. 
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techniques for dynamically creating and locating markets, such that no single node is overburdened 

with the task of maintaining and running the markets. 

3.5.1 Constructing Markets for Buying and Selling Computing Resources 

Since different nodes have different amounts of compute power to sell and purchase, it is necessary 

to create suitable markets to permit buyers and sellers to come together and trade the amount of com­

pute power they require. For a buyer to sequentially search the entire Chord ring for the best available 

deal is a very time consuming and expensive operation. Also, selecting one node, say the successor 

of Chord ID zero, where all the transactions for all the available compute power in the network take 

place is not a good idea either. This is because relying on one node can lead to extreme scalability, 

fault-tolerance, and security problems. 

For efficient creation and lookup of compute power markets, we propose two schemes that attempt 

to uniformly distribute the location of and responsibility for maintaining those markets across the 

network. Both the schemes use Chord for market assignment and lookup, however, they differ from 

each other in the overhead involved and the manner in which nodes are selected for running markets 

for various commodities. The term commodity as used here represents a range of idle CPU cycles/sec 

values. Each market deals in only one type of commodity (i.e., homogeneous markets). A single 

physical node may be responsible, i.e., be a market owner (MO), for more than one market. 

Figure 3.2 depicts how nodes with different values of idle compute power C join different markets. 

Although, for simplicity of discussion, we have used C as a discrete value, in actual practice it refers 

to a well-defined range of values within which a node's idle processing capacity can lie. Thus, nodes 

with different but close enough idle processing capacities trade in the same market. 

We describe below two schemes for the creation of compute power markets. 

3.5.1.1 Single Overlay Scheme 

In this scheme, the value C computed by a seller acts as the Chord ID for locating the corresponding 

compute power market. The successor node of Chord ID C is assigned the responsibility for maintain­

ing the market for that particular idle compute power. It is possible that several compute power values 



www.manaraa.com

31 

i,c=o 

6, C=1 

5, C=C 

' ) 3, C=2 

2, C=1 

C = average idle capacity of a node in cycles/sec 

Markets for : C=0 C=1 C=2 

4, C=2 

Figure 3.2 Creation of markets for CPU cycles in CompuP2P. 

map to a single node and then that node is responsible for running different markets, all dealing in 

different commodities. 

This scheme is very simple to implement and involves almost no additional overhead to create 

markets. Compute power markets are searched using the normal Chord lookup protocol. In other 

words, if a node needs to purchase x cycles/sec, it simply looks up for the market maintained by the 

successor of Chord ID x. The drawback of this scheme is that if the idle compute power values in the 

network happen to be in a very narrow range, then most of the markets map to only a very few distinct 

physical nodes. Those nodes can then become the bottleneck and degrade the system performance. 

Moreover, search for a suitable market by a buyer might potentially require several attempts. In each 

attempt the amount of compute power searched for is successively increased, until a desired seller with 

adequate capacity is discovered. 

3.5.1.2 Processor Overlay Scheme 

In order to more uniformly distribute the responsibility for running the compute power markets and 

to bound the search time for an appropriate seller, an additional overlay can be maintained that keeps 

information about available idle compute power at different sellers in the network. All MOs, which are 

responsible for various commodities, constitute this Chord-based overlay network. The total ID space 

of this new overlay is equal to the maximum amount of compute power that may possibly be available 

on any single node and is upper-bounded by 2° - 1, where c is a constant and represents the number 
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of bits used to represent the maximum value of idle CPU cycles/sec. We assume that the value of c is 

large enough to represent the idle processing power of even a very large computer system. 

The process of selecting a MO for a commodity is illustrated in Figure 3.3. A node on determining 

its value of C applies a hash function to C to find the corresponding Chord ID (= hash(C), a value 

between 0 and 2m — 1). The successor node of hash(C) is then the MO for the market trading in 

commodity C. The various MOs defined in this manner then together form another overlay network, 

called the processor overlay, which has ID space from 0 to 2C — 1. The ID of a MO in this new overlay 

network is simply the value C whose hash value was mapped to it in the initial Chord network. Stated 

otherwise, the ID of a MO in the processor overlay network, called CPU Market ID (CMID), is the 

number of CPU cycles/sec that are being sold in its market. 

It must be noted that in the above description, it is possible that a single node in the initial overlay 

network is the MO for several different markets, causing it to have multiple CMIDs assigned to it in 

the processor overlay network. Each CMID value is represented by a different node in the processor 

overlay, as shown in Figure 3.3. MO s (i.e., nodes comprising the processor overlay) periodically send 

out a broadcast message identifying themselves to nodes in the network. Each node needs only store 

information about a single MO (or at most a few for fault-tolerance) to be able to perform lookups in 

the processor overlay. 

1, MO for C=3 C = average idle capacity of a node in cycles/sec Instances of physical 
node with Chord 1D=4 

Processor overla' 

CMID=1 

6 

2 

5 

X X 

Original Chord 
overlay network 4, MO for C=1 and 2 3 " - Instance of node 

with Chord ID=1 

Figure 3.3 Processor overlay schema using the CPU capacity values given in Fig. 

3.2. 

The lookup in processor overlay, require ^(logM) hops on average, where M is the number of 
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different markets. Moreover, MOs store additional 0(log M) routing information to support the Chord 

protocol for market lookups. 

The search for the compute power in the processor overlay scheme is performed based on the 

number of CPU cycles/sec (which acts as the lookup key) that a client requires for processing. The 

client first contacts any of the known MOs and forwards the lookup request to it. The selected MO 

searches for an appropriate market for the desired compute power in the processor overlay network. 

The lookup process finally returns the IP address of the MO that runs the market for that compute 

power, or the nearest higher compute power value available in the network. For example, if only two 

compute power markets (with commodity values b and c) exist in the network, and a client desires a 

(where a < b < c), then the above mechanism returns the market for b instead of c. The MO is then 

contacted to obtain information about the sellers listed in the market. 

Nodes have incentive to become MOs, since they make profit by charging listing price (LP) from 

sellers (and/or buyers) that benefit from the services provided by a market. We describe below two 

pricing schemes that can be used by a MO. 

• A MO can charge the same fixed price to all the sellers that are listed in the market. This is 

a simple strategy, however, since there is no central authority to govern the listing price, the 

MO can charge arbitrarily high prices to the sellers and/or may price discriminate among them. 

Moreover, this scheme also does not take into account the dynamics of a particular market. It 

seems unfair that sellers should pay the same listing price, when in fact they earn different profits 

depending on the market they are in and the existing competition. We refer to this scheme as 

fixed listing pricing. 

• A MO can charge (to the buyers or sellers or both) on the basis of the market characteristics, say 

some percentage of the selling price. This scheme appears to be fair to both the sellers as well as 

the MO, since a seller is not required to make a payment till it is able to sell its compute power, 

and the MO also potentially gets a higher payoff depending on the dynamics of the market. 

Although appealing, this simple scheme in fact can be difficult to implement in a distributed 

setting when the participants (buyers, sellers, and market owners) are selfish. We refer to this 

scheme as variable listing pricing. 
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3.5.2 Pricing for Computing Resources 

Pricing is non-trivial when there are either multiple at par sellers from a buyer's point of view or 

when a buyer is trying to minimize its cost of processing (again assuming multiple sellers). Utilizing 

the model that a transaction involving the trading of compute power can be modelled as a one-shot 

game and using the results from game theory and microeconomics (the classical Prisoner's dilemma 

problem [52] and Bertrand oligopoly [53], respectively), we can see that long-term collusion among 

compute power sellers (and MO) is unlikely to occur. In one-shot Prisoner's dilemma game, non-

cooperation is the only unique Nash equilibrium strategy for the players. In fact, the model of Bertrand 

oligopoly suggests that sellers (irrespective of their number) would not be able to charge more than 

their marginal costs for selling their resources (see [52] for a game-theoretic derivation of this result). 

In Bertrand oligopoloy sellers strategy is to set "prices" (as opposed to "outputs" in Cournot oligopoly), 

and is thus more reasonable to assume in the context of CompuP2P. In CompuP2P all the sellers in a 

market sell the same amount of a computing resource. As a consequence, sellers, irrespective of how 

many there are in a market, in CompuP2P set prices equal to their marginal costs only. 

One-shot model of a compute power transaction is reasonable to assume, since once a seller sells 

its compute power, it de-lists itself from the market and perhaps move to another market for selling its 

remaining compute power, if available. Moreover, in a dynamic system, where nodes continually join 

and leave the network, it is difficult to keep track of nodes that do not fulfill their collusion agreements. 

Thus, nodes are not likely to be penalized based on their past behavior. 

3.5.2.1 Providing Incentives to Sellers 

Since the best pricing strategy for sellers is to charge equal to their marginal costs, it results in 

zero profits for them. Therefore, sellers would not be motivated to sell their computing resources 

unless some other incentive mechanisms are devised for them. Below we describe two such strategies 

depending on whether fixed or variable listing pricing is used to compensate a MO. 

» Strategy For Fixed Listing Pricing. If fixed listing pricing is possible, then a MO has no 

incentive to cheat and thus we can use the technique employed in Vickrey auction [24, 54]. A 

seller when it joins a market provides its marginal cost information to the MO. A buyer, looking 
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to minimize its cost, selects the seller with the least marginal cost, but the amount it has to pay 

to the seller is equal to the second lowest marginal cost value listed in the market. This selection 

scheme is called reverse Vickrey auction. 

The above strategy provides non-zero profit to the selected seller and ensure that sellers state their 

correct marginal costs to the MO (see [54] for the truth-eliciting property of Vickrey auction). 

The strategy is also inherently secure because even if sellers learn about the posted marginal 

costs, they cannot take undue advantage of that information to post a lower marginal cost than 

their actual values. To understand this, consider the following simple example. 

Example: Suppose seller A has the marginal cost (MCA ) of 5 and the lowest marginal cost 

among all the sellers different from A (= MCA_1) is 4. If A hides its true MC and posts it 

as 3 in order to get selected, its actual payoff would be (MCA~1 — MCA) or 4-5 = -1, i.e., it 

would suffer a loss of -1. Thus, it can be seen that the only rational strategy for a seller is to 

post its correct MC. In this incentive scheme, a seller selected for processing makes a profit of 

{MC' 1  -  MC).  

• Strategy For Variable Listing Pricing. If variable listing pricing is being used, the above 

scheme based on Vickrey auction cannot be employed. This is because Vickrey auction is de­

signed to be used by non-selfish auctioneers (here MO is the auctioneer), whose goals are to 

maximize system efficiency as opposed to personal gains. Whereas, in variable listing pricing, a 

MO has incentive to behave selfishly to maximize its profits. For the case of fixed listing pricing 

this selfishness was not a problem, since the payoff that a MO received was fixed. But if the 

payoff that a MO receives is dependent on a transaction outcome, then it has incentive to cheat. 

To understand how a MO may cheat consider the following example. 

Example: Let us say, a MO receives 10 percent of a transaction value from the sellers. Suppose 

there are three sellers, A, B, and C currently listed in the market. The marginal costs of A, B, 

and C are 100, 200, and 300, respectively. If a buyer now makes a request for the lowest cost 

supplier then the MO has incentive to report C as the lowest cost supplier, instead of A. This is 

because by doing so the MO earns a profit of 30 (=300*10/100) instead of 10 (=100*10/100). 



www.manaraa.com

36 

Even if Vickrey auction is used, the MO has incentive to report 200 and 300, instead of 100 and 

200 as the lowest and second lowest cost values, respectively, to the buyer. 

In order to deal with the selfish MO problem, we propose a max-min payoff strategy. This strategy 

makes the payoff to a seller and MO complementary to each other, i.e., if the seller receives a 

high payoff than the MO receives a low payoff, and vice versa. We define the following simple 

model for this strategy. Let there be S sellers in a market, represented by 1,2,..., S, such that 

M Ci < M Ci\ \ for all 1 < i < S — 1. The sellers are not aware of each other (and of the 

buyers) and only know their own marginal costs, which they truthfully report to the MO. Buyers 

are also completely unaware about the sellers that are listed in the market and rely on the MO to 

give them information about the lowest cost supplier. 

The payoffs to the MO and the selected seller by the buyer under max-min payoff strategy (based 

on the marginal cost values that a buyer receive from the MO) are as follows. 

PayoffMO = (MC'S - MC[)/ (MC' S ) 2  + S 

Payoffseiier = MC[ + 1 (3.1) 

MC[ and MC'S in the above equation refer to the marginal cost values of the lowest and highest 

cost supplier, respectively, as reported by the MO to the buyer. Note that a MO can manipulate 

the reported values if doing so increases its payoff. Also, 6 is a fixed payoff that a MO receives 

from a buyer irrespective of the marginal costs of the sellers. Therefore, the max-min payoff 

strategy can be considered to implement a hybrid listing pricing that has features of both fixed 

as well as variable listing pricing. 

The above payoff values guarantee that the total cost to the buyer is bounded, and the best 

strategy for the MO is to return the lowest cost supplier only. We formalize this in the form of 

the following lemma. 

Lemma 1. Assuming one-shot model of compute power transactions, the payoff strategy in 

Equation 3.1 guarantees the following. 
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a) The lowest cost supplier is always selected. 

b) The payoff received by the selected seller covers its marginal cost of providing the service. 

c) The total cost to the buyer is bounded. 

d) The payoff to the MO is variable depending on the dynamics of a market, specifically, it 

depends on the marginal costs of the sellers listed in the market. 

Proof, a) The MO can increase its payoff by reporting a low value for the lowest listed marginal 

cost, i.e., minimizing MC[ as much as possible. However, MC[ cannot be decreased below 

MC\, the true lowest marginal cost, since otherwise the seller (here seller 1) gets a payoff of 

MC[ + 1(< MC\). Since a seller does not provide its service unless its payoff is greater than 

its marginal cost, the best strategy for the MO is to set MC[ — MC\ and return the lowest cost 

supplier for processing. 

b) This is implied from Equation 3.1 where we see that the payoff received by the seller is one 

more than its marginal cost. 

c) From Equation 3.1, the payoff to the MO is maximized for MC'S = 2 * MC\ (after setting 

d^MCs*0 = 0)' giving it a payoff of 1/(4 * MC\). Note that in the given network model, it is 

difficult for a buyer to verify the marginal cost values it receives from the MO. Thus, the total 

cost to the buyer is bounded, and is equal to 1/(4 * MC\) + 5 + MC\ + 1. 

d) It follows from the description of the payoff values given by Equation 3.1. 

• 

In the above we assume that a MO serve the buyers in the order in which it receive requests from 

them. Moreover, once a seller has been selected for processing, it de-lists itself from the market, and 

joins some other market if it has sufficient compute power remaining. 

From Lemma 1 it can be seen that the max-min payoff strategy satisfy service goals 4, 5, and 7, 

as defined in Section 3.3.1. Moreover, the use of reverse Vickrey auction for fixed listing pricing, 

and max-min payoff strategy for variable listing pricing, enforces that truth-telling with regards to the 

marginal cost of providing compute power, is the best strategy for the computing nodes (service goal 
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3). Also, since payoffs received by nodes are more than their marginal costs of providing services, they 

are motivated to share resources with others (service goal 1). Furthermore, service goal 2 is satisfied 

because resource markets are constructed in such a manner that a client always finds a suitable seller if 

one exists in the network. 

3.6 Prototype Implementation of CompuP2P 

We have implemented a Java-based prototype of the proposed CompuP2P architecture for the shar­

ing of compute power, and have deployed it in our lab for running compute intensive simulations.3 

Java owing to its platform independence and write-once run-anywhere feature enables easy migration 

of tasks from one node to another in a heterogeneous system. 

Screen-snapshots of the implemented CompuP2P prototype, as it appears to a user, are shown in 

Figures 3.4 and 3.5. The first tab, "Usage Policy", allows a user to specify the usage constraints on the 

local shared resources. For example, a user can specify the CPU load levels (in percentage) beyond 

which the node is not allowed to share its compute power. To prevent a task from running forever, the 

user can also impose the maximum allowable run time on tasks received for execution. The user can 

also specify specific times of the day compute power can be shared. For example, one can specify that 

compute power can be shared only during night time when the machine is mostly unutilized. Moreover, 

for sharing storage space, the user can specify the total allocated shared space, along with the directory 

name where the received files are to be stored. Furthermore, the user can limit access to the machine 

by specifying the IP addresses of nodes that are not permitted to utilize the shared resources. 

The second tab, "Resource Sharing", is divided into two components. In the first component the 

user specifies whether compute power and disk storage are shareable or not (usage policies described 

above are consulted before the resources are actually made shareable). The second component lets the 

user advertise files, which can be downloaded by others in the network. 

The "File Storage" tab allows a user to back up its local data on multiple remote machines in the 

network. 

3The work involving GUI snapshots development using Java NetBeans, CPU load calculations, and XML task file parsing 
is done by Varun Sekhri and is from [55]. 
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<? xml version="I.O" ?> 
<TaskFile> 

<SubTask> 
<CPUCycles> 1000</CPUCycles> 
<Price> 10</Price> 
<Checkpoint>true</Checkpoint> 
<CheckpointSize>50</CheckpointSize> 
<Code>job.exe</Code> 
<InputParameters> 

<Count>2</Count> 
<Param>Mesh.exp</Param> 
<Param>Mesh.dat</Param> 

</InputParameters> 
<OutputParameters> 

<Count> I </Count> 
<Param>result.out</Param> 

</OutputParameters> 
<Config> 

<OS>Linux</OS> 
<Processoi>Intel Pentium 3</Processor> 
<Memory op='gt' unit='MB'>256</Memory> 

</Config> 
</SubTask> 

</TaskFile> 

Figure 3.6 XML-based task file 

A user submits its task to the system in the form of a task file. The task file contains a description 

of various sub-tasks (a given task is assumed to be broken into several independent sub-tasks) that need 

to be solved. A sample task file is shown in Figure 3.6. For each sub-task, the following information is 

included. 

« Code ID (or name) of the executable file for the sub-task. The executable file (if not locally 

available) can be downloaded either from a well-defined code server or can be searched for and 

downloaded just as other normal data using code ID (or name) as the key. To ensure security, the 

computing node executes the downloaded code in an appropriate sand-boxing environment. A 

sub-task is executed at a single node and thus define the level of granularity at which parallelism 

can be achieved. 

• Names of input and output files to be used. If the input files are not available with a computing 

node, they can be searched for using the Chord lookup protocol. 

• Estimated amount of compute power required. 

• User's budget, i.e., the maximum amount of reward that a user can give in order to get the sub-
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task successfully executed. 

• An indication whether the sub-task is to be periodically checkpointed or not, and the estimated 

size of checkpoint data. 

» Platform specifications desired for selecting a seller. 

The submitted task file is parsed and a thread is spawned for each sub-task. The thread created is 

responsible for looking up an appropriate seller node, negotiating the price for sub-task execution, and 

finally obtaining the results of computation and storing them in the output file(s) specified by the user. 

The task file is supplied to the service layer via the "Task Submission" tab. 

A node first enters the network by contacting a bootstrap server running at a well-known IP address 

and port number. This bootstrap server is referred to as AdminServer in our implementation. Admin-

Server has information about all live nodes in the network, and returns the (IP address, port number) 

of a randomly selected existing node when contacted by a new node. The new node then uses this 

returned value to join the Chord network and update its routing table. 

In our current implementation, we use AdminServer as a trusted bank that maintains an account for 

each node in the system. A node when it first enters the network is assigned some minimum currency 

that is credited to its account. Users' accounts are automatically debited (credited) by AdminServer 

whenever they buy (sell) compute power as per the pricing strategy outlined in Section 3.5.2. Buyers 

with insufficient balance are not permitted to use computing power of others in the network. 

In addition to the GUI-based interface, one can use our RemoteExecution API for submitting a task 

file to the CompuP2P system. We have provided a TCP/IP socket interface for allowing the Remote-

Execution API, which is in Java, to be usable by applications written in other languages. Applications 

supply the task file name over the socket connection, and are provided a notification (of success or 

failure) when all the sub-tasks defined in the task file are finished executing. 

The system is clearly intended for very coarse-grained parallelism. The efficiency is mostly deter­

mined by the ratio between the computation time of sub-tasks to the communication effort needed to 

send them and handle the overhead. To achieve high efficiency, sub-tasks should be relatively heavy in 

terms of computation time. 
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In order to address the nodes' heterogeneity problem there are at least couple of possible alterna­

tives. One alternative is to use the SPECjvm98 benchmark [58]. A benchmark program can be selected 

based on the type of applications typically submitted by the users of the network. Benchmarks help to 

normalize the compute power values so that a given value is interpreted similarly by all the different 

nodes. These normalized values help to create homogeneous markets such that different sellers have 

equivalent compute power to offer, i.e., given a program all the sellers take approximately the same 

amount of time to execute it. To understand how this normalization is achieved consider the following 

example. Say, there are two nodes A and B that takes time TA and Tg, respectively, to execute certain 

program P of the benchmark. If A has C a and B has Cg available compute power, then the normalized 

idle compute power of A and B is given by CA/TA and Cg/Tg, respectively. These values are then 

used to determine the market they should join in order to sell their compute power. Another alternative 

that is currently used in CompuP2P is to use a MO as a matchmaker. A MO now stores the detailed 

platform description of all the sellers in the market. This description includes information such as OS 

type, OS version, processor configuration, etc. On receiving a request from a buyer, the MO selects the 

seller that not only has the lowest cost, but also meet the platform specifications as desired by a client 

for its sub-tasks. 

3.6.1 Handling Failures of MOs and Listed Sellers 

It is possible that nodes selected as MOs as well as sellers listed in those markets might fail. To 

account for such possibilities, we incorporate the following additional strategies in our prototype im­

plementation. 

1. Sellers periodically re-list themselves in a (new) market. This is done irrespective of whether the 

amount of a computing resource they are offering has changed or not. This periodic listing takes 

care of the following two problems that may arise in any dynamic system - a) MOs leaving the 

network, and b) new nodes joining the network that may replace some existing MOs as the new 

MOs for the respective markets. 

2. Likewise, every MO periodically purges the information it maintain about the listed sellers. Thus, 

seller information is maintained as a soft-state information, and is never outdated for too long. 
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Additionally, a MO before returning information about the selected seller to the buyer checks 

whether the seller is still alive (i.e., is part of the network) or not. 

3.6.2 CompuPZP Applications 

We list here several of the applications of the CompuP2P system. These applications are ones that 

can utilize the idle computing power in P2P systems. A common characteristics of all these applica­

tions is that they all are loosely coupled, i.e., they can be broken into rather independent sub-tasks, 

each heavy in terms of processing power requirements, but relatively light in terms of communication 

requirements. Some of such application are brute force search, code breaking, simulated annealing, 

task-parallel applications, parameter-sweep applications, and Monte-Carlo simulations. All of these 

applications primarily involve generating many solutions in parallel and then using the solutions to 

come up with an answer for the initial problem. 

We have found CompuP2P to be very useful for running large simulations. We used CompuP2P 

for running parallel simulations on multiple optical network topologies as generated by a user using 

ISTOS [59], which is an advanced tool for simulating fiber optic networks. Users in ISTOS can create 

multiple network topologies on which simulations are to be carried out. Earlier all simulations were 

sequentially executed on a single back-end server. (More information on ISTOS can be found in [59]). 

However, now we can exploit the CompuP2P architecture to distribute the task of simulating different 

network topologies to different nodes in the network that agree to share their idle computing power. 

We observed an almost perfect speedup in terms of the time required to finish simulation runs on all 

the submitted topologies, that is very close to the number of nodes that were used in parallel to run 

the simulations. This high speedup was possible mainly because of the low communication overhead -

input to the computing nodes include a topology specification file and other parameters needed to start 

a simulation, and output include a file containing the simulation results (no communication among 

the computing nodes is required). (An executable file of the simulation code was pre-installed on the 

nodes). 

Figure 3.7 shows the speedup achieved as a result of using the RemoteExecution API. In our ex­

periments the number of computing nodes were 10, and the number of sub-tasks were successively 
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increased from 1 to 10. It can be observed that CompuP2P provides substantial performance improve­

ment and this is achieved by simply utilizing the idle capacity of machines in the network. The speedup 

would become close to 1 as the task computation time is increased. Ups and downs seen in Figure 3.7 

for the parallel execution time are due to the heterogeneity of processors used in the experiment. 

3.6.3 Fault-Tolerant Computing 

It is possible that a computing node might not be able to finish the computation assigned to it, either 

because it leaves the network, it crashes, or the computation takes longer to complete than initially 

anticipated by a client. Under such circumstances, it may be expensive to restart the computation all 

over again. To handle such cases, it might be useful to periodically checkpoint the computing node's 

state, so that if required the failed computation can be migrated to another node in the network. 

Unlike traditional checkpointing, which relies on dedicated checkpoint servers to store the process­

ing state, we propose to use server-less checkpointing in which nodes that store the checkpoint data 

are determined on-the-fly. Similar to the techniques outlined in Section 3.5 for the sharing of com­

pute power, we can construct markets for memory storage. The client based on its estimation of the 

amount of checkpoint data can reserve the required memory space on nodes, called storage nodes. The 

nodes performing computation are made aware of the storage nodes, to which they periodically send a 

Speedup achieved by the CompuP2P system for 
ISTOS simulations 
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Figure 3.7 Figure showing the total time required to execute sub-tasks using Com-
puP2P, as opposed to the time required when all the computations are 
carried out on a single node. 
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checkpoint of their computations. Upon failure of a computing node, the stored checkpoint data can be 

used to re-start the computation at another suitable node in the network. We use the object serialization 

feature provided in Java, which enables a failed computation to be continued at a different node upon 

failure of an initially allocated processing node. 

Our server-less checkpointing protocol is designed to take into account the failure of both the 

computing as well as the storage nodes. The fault-tolerance is achieved primarily by implementing 

two independent and parallel activities in CompuP2P, as illustrated in the figure below. 

/* U is the user's service layer, C is the computing node, and S is the 
storage node */ 

Activity 1: 
U monitors C 
if C fails 
then 

Step 1 : U finds another suitable computing node C' 
Step 2: Instructs C' to retrieve the last stored checkpoint data from S 

Activity 2: 
C monitors S 
if S fails 
then 

Step 1: C finds another suitable storage node S' 
Step 2: C notifies U, and gives the information about S' 

Figure 3.8 Fault-tolerant checkpointing activities 

Further, in practice errors in computation and/or communication of results can occur. Computation 

errors can occur due to faulty software/hardware at the computing node, or when a malicious node 

deliberately produces incorrect output. Such errors might be hard to detect and correct. To increase the 

reliability in the correctness of the end results the following alternatives can be used: 

• Redundant computations (as also used in SETI@Home [18]) can be employed. Basically this 

scheme involves performing the same computation multiple times at different nodes and then 

selecting the result produced by the maximum number of the computing nodes. 

» The tasks may be designed in a way that certain characteristics of the answer are known in 

advance to the client, but hard to deduce just from the task code. In these cases, an answer that 
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has these characteristics may be assumed correct. 

• Some tasks may return answers that are easily verified correct. For example, a task, which solves 

an equation using some complex method, may be easily verified by plugging the solution into 

the equation. 

However, all the fault-tolerance features come at an increased cost to a user. The user's budget 

should be sufficient to cover the cost of reserving memory space to store the checkpoint data and/or 

compensate the redundant computing nodes for their processing. 

3.6.4 CompuP2P Overhead 

CompuP2P is a light-weight architecture and incurs minimal overhead on the system. It is built on 

top of Chord, which is a scalable, efficient, and robust protocol [3], In this section we examine in detail 

the additional overhead incurred by the sellers, buyers, and MOs by the CompuP2P architecture. The 

overhead is in the form of either message communication or state maintained by each of these entities. 

• Message communication overhead incurred by both buyers and sellers to locate a market is 

O (log TV) in case of single overlay scheme, and O(logM) (where M is the number of different 

markets) for processor overlay scheme. Once a buyer has selected a seller for service further 

communication between them takes place using a direct TCP/IP connection, bypassing Chord 

routing. Message communication overhead incurred by MOs is almost negligible (apart from 

direct TCP/IP connections with buyers and sellers). 

• In processor overlay scheme all nodes have to maintain additional (apart from the initial Chord-

based overlay state) 0(log M) routing information for maintaining the processor overlay, and in 

single overlay scheme no additional routing information is required. 

A buyer (seller) maintains the IP address of a seller (buyer). Moreover, information maintained 

by MOs is minimal. This information size is given by n * a * s, where n is the number of 

sellers in a market, a is the number of different attributes of a seller, and s is the space required 

to store a value of each attribute. To see how much the value of product n * a * s evaluates 

to, let us consider a MO that stores information about 10,000 sellers. The MO might store 
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several attributes pertaining to a seller. These attributes include information regarding a seller's 

IP address, marginal cost, OS type, OS version, processor configuration, etc. Suppose that there 

are 10 attributes value for each seller, and each attribute require 4 bytes of memory space. Then, 

the total information maintained by the MO is equal to, 10,000 * 10 * 4 % 400KB. Thus, even 

for a large-sized market, its state information (< 0.5MB) can easily reside in any modern PC's 

RAM, which are typically 512MB. Furthermore, since the entire market information easily fits 

into a MO's main memory, lookups to select an appropriate (based on a client's request) seller 

are also very fast. 

3.7 Summary 

In this chapter we described mechanisms for creation of computing resources markets and pricing 

strategies in those markets. The mechanisms proposed are completely decentralized, robust, and take 

into account nodes' selfishness. Specifically, the mechanisms described in Section 3.5 for creation of 

computing resources markets and pricing of computing resources, satisfy all the service goals that were 

identified in Section 3.3.1. 

CompuP2P enables Internet-scale distributed computing and is significantly different from other 

large-scale distributed computing projects which have been implemented in the arena of grid or public 

resource sharing computing. CompuP2P can be used for building large Internet computing infrastruc­

tures, and can potentially reduce the need for expensive processing or storage servers in an enterprise, 

for example. Users of CompuP2P can harness almost unlimited processing capacity of the entire net­

work in a completely distributed manner without relying on any centralized administrative authority. 

CompuP2P relies on a monetary payment scheme to compensate nodes for their computing re­

sources. While the use of a monetary scheme provides a clean economic model, implementing the 

associated electronic payment infrastructure can be very expensive. In order to overcome this prob­

lem, in Chapter 5, we propose a framework for implementing a system of virtual currency by using 

reputation as a measure of nodes' wealth. 
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3.7.1 Contrast with Grid Computing and Public Resource Computing 

Internet computing along with grid computing and public resource computing share the goal of 

better utilizing existing computing resources. However, there are profound differences among the three 

paradigms, and it is unlikely that current grid middleware [62] or public resource sharing architectures 

[63] will be suitable for Internet computing. 

Grid computing [37] involves organizationally-owned resources - supercomputers, clusters, and 

PCs owned by universities, research labs, and companies. These resources are centrally managed by 

IT professionals, are powered on most of the time, and are connected by full-time, high bandwidth 

network links. Malicious behavior, such as intentional falsification of results is handled outside the 

system, e.g. by carrying out a legal investigation. 

Public resource computing [63] involves an asymmetric relationship between projects and partici­

pants. Projects are typically small academic research groups with limited computer resources, exper­

tise, and manpower. Most participants are normal Internet users with PCs, workstations, etc., with 

low bandwidth connectivity to the Internet. The computers are frequently turned off or disconnected 

from the Internet. Participants contribute their resources either out of altruism or if they receive suit­

able "credit" for doing so. Projects have no control over participants, and cannot prevent malicious 

behavior. 

In contrast, the Internet computing paradigm, implemented by CompuP2P, aims to create a single 

large heterogeneous pool of computing resources into which users can tap into to carry out their tasks. 

Here, users can include either enterprises, research groups, or even individual home PC owners. The 

system is typically large, may be millions of users, and network connectivity as in public resource 

computing is sporadic. There is no centralized entity that control the behavior of individual users, 

and thus users can be expected to behave selfishly (and even maliciously). Due to the large-scale, 

dynamism, openness, and heterogeneity of these systems, building a platform for Internet computing 

present several unique and interesting research challenges. Several of these issues, along with how they 

are addressed by CompuP2P, were discussed in this chapter. 
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CHAPTER 4. A LOOKUP STRATEGY FOR INCENTIVIZING SELFISH NODES 

TO SHARE DATA AND ROUTING BANDWIDTH 

4.1 Overview 

Almost all the current research in peer-to-peer (P2P) systems is based on a cooperative network 

model. It is generally assumed that although there can be rogue nodes in a system, most of the nodes 

are trustworthy and follow some specific protocol as suggested by the network designer. We believe 

that such assumptions do not always hold, and in large-scale open systems these issues have to be 

dealt with in order to make P2P systems reliable, robust, and to realize their true commercial potential. 

Moreover, it has been pointed out that free-riding, whereby only few altruistic nodes share their data, 

is one of the most significant problems being faced by today's P2P networks [21]. Solutions that exist 

to tackle this problem suffer from one of the following drawbacks - they are either too heavy-weight 

and expensive (for example, require trusted hardware), or depend on some trusted groups of nodes (or 

a trusted centralized entity) to police the network and keep the free-riders in check. Trust relationships 

are, however, difficult to establish in Internet-based P2P settings. 

In this chapter, we describe a novel strategy for carrying out lookups and obtaining data in P2P 

networks with selfish nodes. Our approach does not require specialized hardware at each node, or prior 

trust relationships among nodes. Both the data provider and intermediate nodes that assist in routing 

of lookup messages are appropriately compensated so as to cover their cost of providing service. This 

is in contrast to traditional lookup schemes, which assume that data is freely available, and interme­

diate nodes cooperate and truthfully follow a given protocol in carrying out data lookups irrespective 

of whether they themselves are currently overloaded or not, for example. The proposed scheme pro­

vides an efficient and natural means to prevent the free-riding problem in P2P networks, and does not 

require prior trust relationships among nodes. Moreover, unlike other schemes it does not rely on any 
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centralized entity or require specialized hardware at nodes. Therefore, the proposed scheme incurs low 

overhead and is highly robust. 

The protocol proposed here is essentially an incentive-driven lookup protocol, which ensure that re­

wards received by intermediate nodes and data providers for routing and serving requests, respectively, 

are maximized by truthfully following the protocol steps. A distinguishing feature of the proposed 

lookup protocol is that it addresses the problem of incentivizing peers for sharing data and routing 

messages for others in a unified manner. 

4.2 Related Research 

The need for developing protocols for selfish agents (nodes) in P2P systems has often been stressed 

before also [24, 42, 43]. Broadly speaking, selfishness is the behavior exhibited by nodes when they 

access or use resources provided by others, without sharing their own for use by others. The resources 

in question can be data, CPU cycles, or bandwidth for forwarding messages. We explore some of the 

mechanisms that have been proposed in literature to address the problem of selfishness in P2P systems. 

4.2.1 Mechanisms for Sharing Data 

Proposals such as [44, 28, 45, 46] provide solutions to avoid the free-riding problem in P2P net­

works, but all these solutions are expensive and/or difficult to implement in a real-world setting. The 

basic approach in all these is to make sure that nodes indeed contribute to others before they themselves 

can obtain services from the network. Also, most of these solutions rely on self-less participation of dif­

ferent groups of nodes to monitor/police the activities of each node to ensure that everyone contributes 

to the system. 

An interesting algorithm for achieving cooperation among network nodes is proposed in [47]. The 

algorithm does not require centralized or third party reputation systems, the monitoring of neighbor 

behavior, or the explicit programming of incentives, and operates in highly dynamic and noisy envi­

ronments. The algorithm allow nodes to adapt selfishly and still maintain high levels of cooperation 

among them. 

The basic algorithm assumes that peer nodes have the freedom to change behavior (i.e., the way 
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they handle and dispatch requests to and from other nodes) and drop and make links to nodes they know 

about. Over time nodes engage in some activity and generate some measure of utility U (this might 

be number of files downloaded or jobs processed etc., depending upon the domain). Periodically, each 

node i compares its performance against another node j, randomly selected from the population. If Ut < 

Uj node i drops all current links and copies all node j links and adds a link to j itself. Also, periodically, 

and with low probability, each node adapts its behavior and links in some randomized way using a kind 

of mutation operation. Mutation of the links involves removing all existing links and replacing them 

with a single link to a node randomly drawn from the network. When applied in a suitably large 

population, over time, the algorithm follows a kind of evolutionary process in which nodes with high 

utility tend to replace nodes with low utility (with nodes periodically changing behavior and moving in 

the network). However, this does not lead to the dominance of selfish behavior. This happens because 

although a selfish node may do well for a while it will tend to lose its exploited neighbors as they find 

other nodes that are members of more cooperative groupings and hence have higher utilities. 

Although the above algorithm has several advantages, there are also significant limitations that 

can affect its performance. It is assumed that nodes would truthfully share their total utility values with 

each other. This is not a reasonable assumption since nodes are expected to behave selfishly. Moreover, 

it is not clear if a node can derive higher utility by deviating from the link removal/addition protocol 

described in the paper. Specifically, can a node derive higher utility by adding on links to new nodes 

without removing existing links, or by maintaining more than one link after the mutation operation. 

Besides the above mechanisms for motivating nodes to cooperate and share their resources with 

others, several reputation management systems have been proposed as a way for incentivizing nodes to 

behave correctly and to minimize free-riding in the network. The goal of these systems is to identify 

(and isolate) uncooperative (and possibly malicious) nodes in the network. Several of such reputation 

management systems are discussed in Chapter 5. 

4.2.2 Mechanisms for Sharing Bandwidth 

To the best of our knowledge none of the existing solutions that deal with the problem of free-riding 

in P2P networks also address the more basic question of why nodes would route messages for others. 
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Since these nodes belong to end users without any centralized controlling authority, they may in order 

to conserve their bandwidth and other resources such as buffer space, memory etc., may drop messages 

received for forwarding. The mechanism proposed in [48] motivates nodes in P2P networks to share 

their routing bandwidth. [48] requires a node to route messages for others in order to obtain routing 

service in return. The authors in [48] develop a trust and security architecture for routing and node 

location service that uses a trust protocol, which describes how honest nodes should perform. 

The problem of selfishness in routing has been encountered and addressed in the context of mobile 

ad-hoc networks (see [49, 50, 51]). Some of these proposals can also find application in P2P networks. 

Below we describe some of the recent research effort that promotes cooperation among selfish mobile 

ad-hoc network nodes. 

In [49], Butty an and Hubaux proposed a stimulation approach that is based on a virtual currency, 

called nuglets, which are used as payments for packet forwarding. Using nuglets, the authors proposed 

two payment models: the Packet Purse Model and the Packet Trade Model. In the Packet Purse Model, 

the sender of a packet pays by loading some nuglets in the packet before sending it. Intermediate nodes 

acquire some nuglets from the packet when they forward it. If the packet runs out of nuglets, then it 

is dropped. In the Packet Trade Model, the destination of a packet pays for the packet. To implement 

the Packet Trade Model, each intermediate node buys a packet from its previous node for some nuglets 

and sells it to the next node for more nuglets. In this way each intermediate node earns some nuglets 

and the total cost of forwarding the packet is covered by the destination. 

Besides the above two models, Butty an and Hubaux also proposed a scheme based on credit counter 

[50]. In it nodes pass each packet (generated as well as received for forwarding) to its security module. 

The security module maintains a counter, called nuglet counter, which is decreased when the node 

wants to send a packet as originator, and increased when the node forwards a packet. The value of the 

nuglet counter must remain positive, which means that if the node wants to send its own packets, then 

it must forward packets for the benefit of other nodes. The nuglet counter is protected from illegitimate 

manipulation by the tamper resistance of the security module. In this new scheme, each node keeps 

track of its remaining battery and its remaining credit. The authors simulated four rules (involving 

different degrees of cooperation) for a node to determine when to forward others' packets and when to 
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send its own packets. The results showed that the most cooperative rule is actually optimal to achieve 

the goal of maximizing each nodes' throughput (and goodput). 

Another approach is exemplified by the Sprite system [51], which provide incentive to mobile 

nodes to cooperate. When a node sends its own messages, the node looses its credit (or virtual money) 

to the network because other nodes incur a cost to forward the messages. On the other hand, when a 

node forwards others' messages, it gains credit. The system determines payments and charges from 

a game-theoretic perspective and is effective in motivating nodes to behave honestly, even when a 

collection of the selfish nodes collude. However, Sprite relies on a centralized trusted third-party to 

achieve its goals. 

4.3 Model Assumptions and Limitations 

We assume a P2P network model, wherein nodes act selfishly. Nodes process and forward lookup 

messages if there is a potential for making profit in future. 

We assume that for each data there is a single server in the network, i.e., caching and replication of 

data does not take place. This can be enforced for example by using watermarking techniques [64]. We 

assume this so as to simplify the lookup mechanism and to be able to deterministically predict whether 

a given data is present in the network or not, and at which location. Caching and replication can cause 

ambiguities regarding the possible location of data, and therefore, for simplicity, we assume that there 

is a one-to-one mapping between a data item and its provider. Moreover, both caching and replication 

consume storage resources. Therefore, unless nodes are suitably compensated, they might not store 

data for others even if it is required by the protocol design. 

Data indices are replicated at k different nodes, which are called the terminal nodes for that data. 

The lookup messages are first routed to terminal nodes from where they are sent directly to the server 

node (in one logical hop). Terminal nodes maintain a mapping (called index) from a data name or ID to 

the IP address of the server providing that data. For a data item, say D, its terminal nodes are denoted 

by Tg. V« 6 k}. (Here D denotes the name or ID of some data item). The routing of a message 

from a client to a terminal node may go through other intermediate nodes. This list of intermediate 

nodes along with the terminal node is referred to as a request chain. For simplicity request chains 
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comprising of different terminal nodes for the same data are assumed to be node disjoint (except at the 

client), as shown in Figure 4.1. 

Client node 

Q Intermediate nodes along a request path 

Server node 

*0 "O o » 

*0 "O =0 ' 

0-.i  

o...[ 

o ; 

Terminal nodes that participate in the auction 

Figure 4.1 Formation of request chains due to the propagation of lookup requests. 

Data is assumed to have utility for nodes and thus have costs associated with them. In other words, 

unlike in traditional P2P networks [9, 1, 10], where a node can request any number of files, a client 

node in our model is required to pay a reward to the supplier to be able to acquire the desired data. The 

reward might have to be paid not only to the provider or server that supplies the data, but also to the 

intermediate nodes that assist in locating the server. 

For a lookup process initiated by a client, a network can be modelled as comprising of three types 

of entities - the client itself, the intermediate nodes (including the terminal nodes), and the server 

providing the data. Nodes incur a cost during a lookup process. The server nodes, especially that serve 

large sized data, are severely affected under the conditions of heavy load and might be able to serve 

only some of the requests. Typically, the requests that offer higher prices are given preference over 

others that offer lower prices. Since, clients incur cost for initiating lookups, we assume that it is in 

the clients' best interest to successfully obtain the data in as few lookup transactions or attempts as 

possible. 

Unless otherwise specified, all message communication is assumed to provide message non-repudiation. 

So, for example, if node 1 needs to send a message M to node 2, then instead of directly sending M, 

it sends Me = [M,T, E(private — keyi; M,T)) to 2. E(private — keyi; M,T) is an encryption of 

M using a well-known algorithm using the public key private — keyi of node 1. T is the time stamp 
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at which the message is sent. Node 2 after receiving Me obtains the public key of 1 and verifies that 

E{private — keyi] M, T) indeed has a true copy of M that it receives separately as part of Me. Node 

2 also keeps a copy of E(private — keyi ; M, T) that can be used later to prove to anyone that the 

message M was indeed sent to it by node 1. The intent of including an encrypted copy of the message 

is not message authentication, but to use it as a proof (if required later) that the message was indeed 

sent by the sender to the receiver. Our protocol relies on message non-repudiation to ensure that nodes 

do not go back on their commitment as suggested by the contents of the messages sent by them. As 

explained in Chapter 1, it is assumed that there is a mechanism in place to punish nodes if it can be 

proven that they did not fulfill their commitments. 

Now we discuss how Problem 2 mentioned in Chapter 1 is dealt with by the incentive-driven lookup 

protocol. 

4.3.1 Problem Formulation 

Service type (S): Accessing data in P2P networks. 

Problem Definition: Develop a mechanism such that resources like data and bandwidth (used for 

routing of lookup messages) can be priced in P2P networks. 

Service Goals (G5): We identify the following objectives for the service type defined above. 

1. Nodes must be motivated to share data and provide routing service to others. 

2. Truth-telling, with regards to the marginal cost of providing data and forwarding a lookup mes­

sage, should be the best strategy for the data providers and intermediate nodes, respectively. (In 

P2P networks, peers route lookup messages for each other; the nodes through which a lookup 

message propagates, are referred to as the intermediate nodes for that request). 

3. Payoffs received by nodes should be greater than their marginal cost of providing the service, 

i.e., providing data and/or bandwidth. 

4. A client should not be charged an arbitrarily high price for requesting data. 

The protocol Ps that we propose for service S provides a mechanism for carrying out lookups and 

pricing each step of the lookup process, such that nodes have incentive to forward messages and share 
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data with each other. We first describe the proposed protocol, evaluate it against several possible threat 

models, and then give its implementation on Chord-based P2P networks. 

4.4 Description of the Incentive-Driven Lookup Protocol 

The proposed protocol correspond to activities in real-world economic markets, where buyers pay 

money to sellers and intermediaries that facilitate the transactions. However, unlike in the real-world, 

there are no well established protocols (government rules and policies), and institutions and infras­

tructure (such as stock exchanges) in a typical P2P setting that can govern the parameters (such as 

the price charged, the place of occurrence, etc.) of the transactions. Due to such constraints several 

non-trivial issues need to be addressed - setting resource prices, determining payoffs to intermediate, 

preventing cheating, etc. We address these issues by the proposed protocol. To simplify our discussion, 

we consider an example of a lookup process and see how it is carried out under the given protocol. 

4.4.1 Parallel Data Lookup 

The client C before initiating a lookup for data D, provided by server S, estimates its utility Up of 

the data. [Tp is the maximum price that it can offer for data D. C then sends a separate lookup message 

towards each of the terminal nodes. Together these parallel lookup messages constitute a single lookup 

process initiated by C for data D. 

Each lookup message Msgi00kup contains the following information, as included by the client -

address of one of the k terminal nodes (%.), the data ID (£>), the maximum price offered (Pc), the 

marginal cost (MCtotai), the request IDs (Reqidprivate  and ReqidpubiiC)-

Reqidpuuic identifies the lookup process such that S (and intermediate nodes) on receiving multiple 

lookup messages knows that the messages pertain to the same lookup process. Thus, the same value of 

ReqidpubUc is included in all the lookup messages. On the other hand, a unique value of Reqidprivate is 

included in each of the lookup messages. In Section 4.4.5, we illustrate the significance of Reqidprivate .  

MCtotai contains C's marginal cost MCc• Each intermediate node on receiving the lookup message 

updates MCtotai by adding its own marginal cost to the received value. 

Intermediate nodes for all the lookup messages route the received lookup message to the next hop 
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neighbor (called the successor node) and this process continues till the message reaches the desired 

terminal node. Since the terminal nodes store the index containing the IP address of S, they contact S 

in order to obtain the data. S receive k such requests and from the Reqidpuuic values knows that the 

requests pertain to the same lookup process. S then holds a second price sealed-bid auction (also called 

Vickrey auction [54, 24]) with all the terminal nodes as the bidders. S provides the data to the terminal 

node that offers the highest price. The request chain containing the highest bidder, i.e., the winning 

terminal node, is called the winning request chain WRC. 

4.4.2 Bidding for the Data By the Terminal Nodes 

In Vickrey auction, the highest bidder wins the auction, but the price that it has to pay is equal 

to the second highest bid. Vickrey auction has several desirable properties, such as existence of truth 

revelation as a dominant strategy, efficiency, low cost, etc. Vickrey auction in its most basic form is 

designed to be used by altruistic auctioneers, which are concerned with overall system efficiency or 

social good as opposed to self-gains. Self-interested auctioneer is one of the main reasons why Vickrey 

auction did not find widespread popularity in human societies [65]. 

Since, S (the auctioneer) behaves selfishly and tries to maximize its profit, the auction process needs 

to ensure the following. 

• Selecting the highest bidder is the best strategy for S. 

• The price paid by the highest bidder is indeed equal to the second highest bid, i.e., S should 

reveal true second highest bid to the highest bidder. 

• Collusion among S and the bidders should not be possible. 

In view of the above requirements, we provide a two-phase secure Vickrey auction protocol, which 

is described in Section 4.4.3. Phase one of the protocol is similar to an earlier protocol in [66] for 

secure second-price auctions. In both the protocols, bidders initially send encrypted copies of their 

bids to the auctioneer. In subsequent discussion, we denote the highest and second highest bids by Mi 

and M%, respectively. The price offered by a terminal node to S is equal to Pc — MCtotai• The amount 

of profit made by the WRC is equal to (Mi - Mg). This profit is shared fairly among the nodes of the 
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WRC (and the client) in proportion to their marginal costs, i.e., nodes with higher marginal costs get a 

higher proportion of the total profit, and vice versa. 

4.4.3 Two-Phase Secure Vickrey Auction to Determine the Data Price 

S employs a two-phase Vickrey auction to select the highest bidder and determine the price at which 

the data is provided. 

1. In the first phase, the bidders send encrypted copies (E(randKeyi ; b, )) of their bids in message 

Msgud to S. Here E(randKeyf, h) is the encryption of bid value 6, of terminal node Td4 using 

a randomly chosen secret key randKeyi. Each message Msg^d also includes Reqidpubuc value 

received by a terminal node, so that S can determine that the bids pertain to the same lookup 

process. 

2. The received encrypted bids are sent by S back to all the bidders in message Msgud-reply Since 

after receiving Msgud-repiy the bidders have encrypted copies of all the bids (total k such bids), 

S is unable to (undetectedly) alter existing or add fake bids. 

3. Now each bidder after receiving the message M sgud-repiy, sends its secret key in message 

Msgkey to S. The received key values are now sent by S back to all the bidders in message 

Msgkey-repiy At the end of this phase, S and all the bidders are able to open the encrypted bids 

and find out about the highest and second highest bids. 

4. In the next and last phase of the auction, S sends a message Msgcert to the winning terminal 

node (TpWRC) certifying that it has won the auction. The received certificate is forwarded along 

the reverse path, i.e., opposite to that followed by the lookup request, till it reaches C. 

Msgcert contains the following information - data value denoted by content(D), the highest bid 

Mi, the second highest bid M^, the total marginal cost MCtotai (received by S in Msg^d), and the IP 

addresses of all the terminal nodes that participated in the auction (in Section 4.4.5, we explain how 

this information is utilized by C in order to verify the auction results). The information in messages 

Msgcert and Msgi00kup allow the intermediate nodes, including TDWRC, to calculate their reward 
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for being part of the WRC. The possession of messages Msgcert and Msgi00kUp serves as a contract 

between a node and its predecessor (one which sent the lookup message initially) regarding the reward 

that the node is entitled to receive from the predecessor. The knowledge of the auction results also 

enables C to determine the price that it finally has to pay for data D. The calculations of the exact 

payoff values are discussed next. 

4.4.4 Rewarding Nodes of the WRC 

Pay, = 13.33 PayT1 = 13.33 Two-phase Vickrey auction 

where T1 is the winner 

Initial offered price 

RC 

Profit. = 3.33 PayB = 60 

Price. = 100 90 

RC 
T2 

70 

20 

T3 RC3 3 

Figure 4.2 A lookup example illustrating how payoffs are distributed among the 
WRC nodes based on their marginal costs. 

Msgcert includes the total marginal cost value MCtotal of all the nodes in the WRC. This informa­

tion along with the highest and second highest bids determine each WRC node's payoff. For example, 

node jc's payoff Payx is calculated as follows. 

= MC= + ( ^ * (Mi -Afg)) (4.1) 
Ctotal 

The amount received by S is equal to Mi (> MCs). The profit share of C, i.e., the portion of its 

initial offer that it saves or gets to keep, is similarly calculated as given below. 

MCr 
Profite = (MCt t t * (Mi " M>)) (4-2) 

Let us consider a simple example given in Figure 4.2 to better understand the above equations. 

Three request chains (shown as RCi, RC2, and RC3) are formed as part of the lookup process initiated 
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by node A. Numbers within the circles represent the nodes' marginal costs. 77, 72, T3 are the respective 

terminal nodes that store the data index, i.e., they store the IP address of node B that owns the desired 

data. Node B on receiving the lookup requests conducts a Vickrey auction, as a result of which 77 is 

selected as the winner, but the price it pays is 60. The results of the auction are sent back to node A, 

and also seen by all the intermediate nodes along RC\. The resulting payoffs to the intermediate nodes 

and node B are indicated in the figure. For example, payoff to node 1 is 13.33 (=10 + (10/30)*(70-60)). 

Node A's profit share is 3.33 (= (10/30)*(70-60)). Thus, node A effectively has to pay 86.67(=100-10-

3.33) for data whose utility to it (after deducting the marginal cost) is in fact 90. Therefore, the proposed 

scheme based on Vickrey auction ensures that everyone, including the client, server, and intermediate 

nodes constituting the WRC benefit, i.e., earn more than their marginal costs, by participating in the 

lookup process. This potential of earning higher profits motivate nodes to share their data and forward 

messages for others. 

C after receiving Msgcert determines and takes away its profit share and gives the remainder of 

its initial offer to the successor node along the WRC. The successor node determines its own payoff 

using Equation 4.1 and after keeping that amount transfers the remaining to its successor, and so on. 

This process is repeated till the server receives its due payoff. In the above example, node A after 

keeping its profit share (and the amount equal to its marginal cost) gives 86.67 to node 1, which after 

keeping its payoff gives 73.34 to 77. Now 77 after keeping its payoff gives the remaining (i.e., 60 (% 

73.34-13.33)) to node B. The amount received by node B thus equals Mi (=60). 

A node cannot default on its payment to its successor, since as mentioned earlier, the content of 

messages (Msgi00kUp and Msgcert) form a non-refutable contract between a node and its predecessor 

regarding the amount of money that the node is to receive from its predecessor. 

Figure 4.3 summarizes the steps involved in the incentive-driven lookup protocol. The various 

messages used, along with the information they contain, are also summarized in Table 4.1 for an easy 

reference. 
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Step 1: Client initiates the lookup process by sending a lookup message Msgi00kUp towards 
7^ Vie 
- Intermediate nodes update the value of MCtotal before forwarding the lookup message 
- Lookup messages reach the terminal nodes 

/* Vickrey auction - Phase I */ 
Step 2: Terminal nodes on receiving Msgi00kuP send Msgaa to the server 

Step 3: Server waits for k Msgud, messages (i.e., bids) or till some maximum time r 
- Bids are identified as belonging to the same lookup process by using the value Reqidpv,buc 

Step 4: Server sends message Msgud-repiy to the terminal nodes 
- After the above step the bidders have encrypted copies of all the bids 

/* Vickrey auction - Phase II */ 
Step 5: Terminal nodes send their secret key to the server in message Msg^ey 

Step 6: Server replies with a message Msguey-repiy distributing the secret keys among the bidders 

/* Vickrey auction ends */ 
Step 7: Server sends message Msgcert to Tdwhc , which is sent to the client using the reverse lookup path 

Step 8: Client (optionally) verifies the auction results by contacting the terminal nodes 

Step 9: Reward is given to the nodes of the WRC (including the server) 

Figure 4.3 Incentive-driven lookup protocol steps 

M-S9lookup TDH -D) PC-) M C total •> R^Qidprivate 
Msgud E(randKeyi; 6%), Reqidpubnc> MCtotai 

M Sgfyid—reply UE(randKeyi; bi), Reqidpubuc 

MSQkey randKeyi, Rcqidpuifiic 

M SQkey—reply {JTQTKIK. syi, RcqtdpjibHc 

MsCJcert content{D), Mu M2, Reqidpubiic, MCtotai, IP addresses VTDi 

Table 4.1 Various messages comprising the incentive-driven lookup protocol 

4.4.5 Threat Models 

In this section, we evaluate the robustness of the proposed incentive-driven lookup protocol in the 

face of nodes' selfishness. In particular, we identify and analyze our protocol against potential threat 

models and show that truthfully following the protocol steps is the best strategy for the selfish nodes. 



www.manaraa.com

63 

Threat Model A (Cheating by the auctioneer). Since the auction by S takes place in a com­

pletely distributed environment, the bidders are unaware of each others' bids and also cannot monitor 

S's activities. In such a scenario, using the traditional single-step Vickrey auction, where the bidders di­

rectly send their bids in clear to the auctioneer, would enable S to easily manipulate the auction results. 

To understand this, let us again consider the example given in Figure 4.2. If traditional Vickrey auction 

is used, then B on receiving the three bids of 70, 60, and 50 knows that 77, which is the highest bidder, 

is willing to pay any amount less than or equal to 70 for data D. Therefore, B can send a message to 77 

that it is the highest bidder, but the amount it has to pay (i.e., the second highest bid) is 69. Thus, by 

cheating B makes an additional profit of 9. 

In order to counter the problem of addition of fake bids (for example, the bid value 69 as explained 

above) and manipulation of submitted bids by an auctioneer, we use a two-phase Vickrey auction as 

described in Section 4.4.3. Now the auctioneer, before it can read the bids, has to give encrypted copies 

of all the received bids back to the bidders. Therefore, in the above example, B is unable to send fake 

bid 69 after finding that 77's bid is 70. 

One might argue that there is a possibility for the auctioneer to send different encrypted bids to 

different bidders if it stands to gain by doing so. However, this strategy would not be effective unless 

the auctioneer has prior information about the bids it is going to receive, as shown next. Using the same 

example, let 77's bid be 69, instead of 70 as anticipated by B. Therefore, during the first phase of the 

secure Vickrey auction protocol, B encrypts values 50, 60 and 70 and sends it to all the bidders. Here 

50 and 60 represent the actual bids and 70 is the fake bid. In the second phase, 77 (and also T2 and T3) 

after receiving the decryption keys finds that the highest bid is 70 and that it has lost the auction. Thus, 

none of the bidders get selected as the winner and B by faking the bids gets a payoff of 0 as opposed to 

60 that it could have received by not cheating. This observation can be generalized in the form of the 

following lemma. 

Lemma 2. Assuming a one-shot model of the proposed two-phase Vickrey auction protocol, the auc­

tioneer cannot unilaterally increase its expected payoff by sending fake (encrypted) bids to the bidders. 

Proof. Without loss of generality, suppose the bids are ordered as follows - b\ > 62 • • • > bk- Now the 

auctioneer can cheat by creating a false second highest bid b'2 (where b\ > b'2 > 62) and sending it, 



www.manaraa.com

64 

after encrypting the fake bid with its own key, back to TDx during the first phase of the Vickrey auction 

protocol. In this manner, the auctioneer can get a payoff of b'2 instead of 6% from the highest bidder. 

For this cheating by the auctioneer to be successful two conditions must simultaneously be satisfied -

1. The auctioneer should know that the highest bidder (among the k bidders) is Ty1. 

2. The auctioneer should have precise knowledge about the highest and second highest bids. 

However, since the auctioneer has no knowledge about the details of the lookup messages received 

by the bidders (and their own marginal cost values), and the bids received by the auctioneer are en­

crypted, the above two conditions for successful cheating cannot be satisfied. 

Hence, the auctioneer cannot unilaterally increase its expected payoff by adding fake bids during 

the two phase Vickrey auction protocol. D 

It is possible that even the knowledge of the distribution of the bid values and the number of bids 

might be exploited by the auctioneer. The auctioneer can send different combinations of encrypted 

bids to different bidders in order to fake the auction results and thus maximize its expected profit. Such 

situations are easily handled by the solution proposed for the next threat model. Basically, the strategy 

is to ensure that the auctioneer is unable to send different bids to different bidders. This is achieved 

without requiring any costly and difficult to implement communication among the bidders themselves. 

Threat Model B (Collusion between S and TDWRC). The proposed protocol relics on the fact 

that correct auction results are sent back to C, so that the reward is fairly distributed among all the nodes 

comprising the WRC. However, it is possible for S and T[JWI)C to collude and make higher profits by 

including a fake second highest bid value in Msgcert- For example, in Figure 4.2, by including the 

value of M2 as 69 (instead of 60) in Msgcert, 77 receives the payoff of 79.34 from node 7, instead of 

73.34 that it receives by not colluding. This higher payoff can be shared between S and TDWRC, and 

so they both benefit with this collusion. 

As mentioned earlier, the message Msgcert sent back to C includes the information (i.e., the IP 

addresses) of all the terminal nodes that participated in the auction. C on receiving this information can 

verify the truthfulness of the received auction results by contacting any (or all) of the listed terminal 
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nodes. These terminal nodes are given incentive to reveal the truth, i.e., disclose the true values of 

the highest and second highest bid in the auction. The terminal node that identifies that there is a 

discrepancy (if any) between the auction results received by C and the actual values, is referred to as 

the whistle blower TDwb3WB 6 k}. C can give Tdwb part of the money that it saves by 

detecting the collusion.1 

A lookup transaction can be considered as a one-shot game in which each participant tries to max­

imize its profit in a single play of the game. One-shot model is reasonable to assume because the 

network under consideration is large, distributed, and dynamic. Moreover, it is difficult for nodes to 

monitor and keep track of others that do not fulfill their collusion agreement. Thus, the terminal nodes 

have incentive to become a whistle-blower, as they get additional reward from the client (possibly in 

addition to what they receive from the server for not revealing the truth). 

Moreover, C upon contacting the terminal nodes ensures that they have the same auction results, 

i.e., they received the same encrypted bids from the auctioneer during phase one of the auction. Thus, 

any cheating by the auctioneer, such as sending different encrypted bids to different bidders, as men­

tioned in Threat Model A, can be easily detected by C. This is achieved without incurring excessive 

message communication overhead required in any bidder discovery and verification protocol, in which 

bidders identify each other and cross-check each others' bid values. 

In effect, C acts as a centralized controller for its lookup process and ensures that no cheating by 

the auctioneer and/or collusion between the auctioneer and winning terminal node takes place. In fact, 

the proposed solution is effective even if all the nodes (except the client) of the WRC collude to get 

a higher payoff for themselves. This is because the client's profit share is dependent only on its own 

marginal cost as well as the auction results, which it can verify from the terminal nodes. 

Threat Model C (Sending incorrect terminal nodes information). The prevention of collusion 

in Threat Model B relies on the fact that the information about the terminal nodes sent by S back to 

C in Msgcert is correct. However, it is possible for S to include fake information about nodes, which 

it control or with whom it has prior collusive agreement, such that they are guaranteed not to be the 

'Note that the terminal nodes have verifiable copies of the encrypted bids and corresponding keys that they receive from 
the auctioneer. This verification is possible due to message non-repudiation. 
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whistle blowers. C will then have no way of cross-checking the bid values and would end up paying 

more than what it should. To prevent such a possibility, C includes a unique request ID Reqidprivate 

in each of the lookup request messages it sends. Upon contacting a terminal node, C requests the 

ReqidpriVate value that the node has to make sure that the value is indeed one of the values it initially 

included in a lookup message. This provides a method for terminal nodes' authentication, as C can 

be sure that it is interacting with a valid terminal node. The results of Threat Models B and C can be 

generalized in the form of the following lemma. 

Lemma 3. The auctioneer cannot collude with the bidder(s) to increase its expected payoff without 

being caught by the client node. 

The following theorem can now be stated for the incentive-driven lookup protocol. 

Theorem 3. An auctioneer in incentive-driven lookup protocol cannot cheat. 

Proof. Follows directly from Lemmas 2 and 3. • 

Threat Model D (Over-reporting of marginal costs and under-reporting of utility values). 

We have shown how Vickrey auction can be used to establish utility-driven pricing in a completely 

untrusted and distributed P2P environments. Vickrey auction results in fair pricing, in the sense that 

it rewards the client for being truthful in stating its true utility for the data, and also the intermediate 

nodes for revealing their true marginal costs for forwarding the lookup requests. 

An increase in the MCtotai value for a request chain lowers its final bid, thereby reducing its 

chances of winning the auction. If intermediate nodes run specialized learning algorithm and gather 

privileged information about the network state, such as other intermediate nodes' marginal costs that 

comprise the different request chains, then they may benefit (i.e., make higher profits) by quoting a 

higher marginal cost and still be part of a WRC. Such information, however, is not easy to obtain in 

highly dynamic environments, and also the information about current network state may not remain 

valid even in near future periods. In addition, implementing such algorithms can be expensive. There­

fore, to minimize MCtotai it is in each node's best interest to report its true marginal cost. 

One may argue that an intermediate node can increase its profit by only slightly increasing its true 

marginal cost, while not jeopardizing its chances of still being part of a WRC. However, we show that 
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in the absence of any privileged information, revealing true marginal cost is the optimal strategy for a 

node. This result is summarized in the form of the following lemma. 

Lemma 4. Given that a client's utility for a data being looked up is bounded (for example, in Chord 

[3] if it is less than four times the total marginal cost of nodes comprising the WRC), the best strategy 

for an intermediate node is to report its true marginal cost while forwarding a lookup request for the 

data. 

Proof. Let the price offered by bidders (terminal nodes) to an auctioneer (server) are in the interval 

from [0, P]. There are k (k >> 1) bidders and we assume that all the k bids are uniformly distributed 

in the interval [0, P}. The average distance between a bid and the next higher bid (assuming that there 

is one) is 

Further consider a node, say z, which is part of some request chain and has a true marginal cost 

of M Ci. For simplicity, we assume that all the nodes belonging to V s request chain have the same 

marginal cost. (For simplicity, the client's marginal cost is assumed to be zero). We show that if all 

the other nodes (except i) that are part of the lookup process report their true marginal costs, then the 

best strategy for node i is to report its true marginal cost only.2 To understand this, let node i falsely 

increase its marginal cost by y (y << M Ci) and report it as M Ci + y instead of M Ci. Before we 

proceed further, it is useful to define the following additional variables. 

T = total marginal cost of the nodes belonging to the same request chain as node i. T includes 

MQ. 

r = price offered by the terminal node of node z's request chain to the server, r 6 [0, P ] .  

For simplicity, we say that T + r = P. This is based on the assumption that P represents the 

client's utility for the data being looked for and that the client uses its true utility value while initiating 

the lookup process. 

Since node i gets a payoff only if the terminal node of its request chain wins the auction, its payoff 

when it acts truthfully and falsely, represented as ET and Ep, respectively, are given as follows. 

2From Equation 4.1 we know that a node can get a higher payoff by falsely reporting a higher marginal cost value. 
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Ep = * [(^ ~ V) » M°'++
y
V + MC, + »] (4.4) 

The first term on the right hand side of both the Equations 4.3 and 4.4 describe the probability that 

node i is part of the WRC and the second term gives the payoff that it subsequently receives. We now 

proceed to show that under the condition when P < 4 * T, Ep is less than ET- For tractability, we 

further assume a Chord-based P2P network, where the number of neighbors of a node is approximately 

twice the average hop length of a lookup path. In other words, T = | * M Ci (assuming k % log TV). 

ET is greater than EF if Ep — ET < 0, i.e., if 

or 

<£> ' " ' * I *T Ï  +  

In the above, we use binomial expansion to solve (1 — ^)fc™1 = 1 — (k — 1) * Higher order 

terms are ignored, since they anyway further reduce Ep. Solving the above inequality we get, 

r k *y T 3 T 3 
1 < —h - => — < -

2 T T T 2 2T 2 

Thus, if t < 3T, we have Ep < ET- This proves that if the client's utility (i.e., P) is less than 4T, 

truthfully reporting one's marginal cost maximizes one's (here node z's) payoff. • 

Moreover, a client's goal to obtain a data item in a single lookup transaction is best served if it 

sets maximum possible price for the desired data and that price is the client's utility for the data. The 

server's marginal cost of serving the request (and of the intermediate nodes) is unknown to the client 

and can be high depending on the number of requests it is currently serving. Together these factors 

ensure that using the actual utility value for setting the offered price is the best strategy for the client. 



www.manaraa.com

69 

4.4.6 Preventing Free-Riding and Denial-of-Service (DoS) Attacks 

The incentive-driven lookup protocol provides protection against denial-of-service (DoS) attacks 

to which other (cooperative) P2P systems are easily vulnerable. In traditional P2P systems, a node can 

repeatedly make requests for resources without being charged or penalized. Such repeated requests 

consume network and server resources, and prevent other valid requests from being fulfilled. However, 

in our proposed protocol such attacks are made costly, and are thus unlikely to be launched by malicious 

nodes intending to overburden the limited resources of the system. This is because on completion of 

a successful lookup request, the originating node is required to make payments to other nodes that 

supplied the data and routed the lookup request. Thus, it is expensive to launch DoS attacks against 

any server and/or network in general. 

By charging the clients for the lookup process, our protocol minimizes the problem of free-riding 

in the network, as the nodes themselves also have to share their resources in order to be able to pay 

for the resources they acquire. Nodes are charged for the data they acquire, and the amount charged is 

at least the sum of the marginal costs of the intermediate nodes that route the request and server that 

serves the request. 

4.5 Implementation of the Incentive-Driven Lookup Protocol Using Chord 

We now consider a Chord-based P2P network for describing the implementation of the proposed 

incentive-driven lookup protocol. We also evaluate the performance of Chord for providing routing 

service in a network of selfish nodes. We show that in a large network, unless nodes have privileged 

information about the location of data, following Chord is a good strategy provided that everyone else 

also follows the Chord protocol. 

The incentive-driven lookup protocol described in the previous sections can be implemented as it 

is on top of the Chord protocol. Only the mechanism by which request chains are formed needs some 

explanation. It must be noted that now the terminal nodes are the Chord successors of the mappings 

of a data item onto the Chord network. The term "successor" as used here is the same as used in the 

description of the Chord protocol, where it referred to the node which immediately succeeds an ID 

value in a Chord ring or network. The method by which these mappings are determined is explained 
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below. 

4.5.1 Data Index Replication 

The proposed resource pricing scheme utilizing Vickrey auction is based on competition among 

different chains of nodes attempting to forward the lookup request and delivering the data back to the 

client. Higher the competition among the nodes is (i.e., more disjoint the request chains are), higher 

is the robustness of the pricing scheme. If normal Chord index replication is used, i.e., storing the 

data index values at the k Chord successors of the ID where the data name hashes to, then with high 

probability, lookups to all these replicas pass through a single node (or a small group of nodes). Such 

a node can easily control the lookup process and charge arbitrarily high payoffs for forwarding the 

requests. To avoid such a monopolistic situation and ensure fair competition in setting prices, we 

propose that data indices be replicated uniformly around the Chord network at equal distances from 

each other. In other words, data Chord ID mappings should span the entire Chord ID space; this ensures 

that the lookup paths to different index replicas are maximally disjoint, and are not controlled by any 

single node. Below we give a mechanism for determining the location for storing index replicas in the 

network. 

If data D hashes to Chord ID DI (i.e., the output of the hash function, whose input ID is D, is 

DI),3 then the k data index replicas map to the following Chord IDs. 

2 m 
D I D i  =  ( D I + - * { i -  l))mod(2m), V* G {1,..., k }  (4.5) 

The index values are then stored at the Chord successors (the terminal nodes) of the IDs represented 

by DIt)i Vz G k}. The intent of replication in Chord is to simply obtain fault-tolerance, while 

in our protocol the intent is to obtain both fault-tolerance as well as fair pricing. Uniformly spacing 

the data indices ensure that the lookup paths for different index copies are as node disjoint as possible. 

This is evident from the results of Figure 4.4, where we find that the replication strategy described 

above decreases the probability that the same nodes are included in multiple paths to reach the index 

replicas. Similar results would be obtained for a network of any size and any replication factor. 

3The hash function used for computing data Chord ID mapping is the same as that used for determining Chord IDs of the 

nodes. 
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as opposed to the one used in Chord 

2 5 

Replication factor 

0 Chord replication 

H Modified collusion 
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Figure 4.4 Average number of repetitions of intermediate nodes that appear in 
multiple lookup paths to the data index replica copies. Size of the 
network N = 500 

Data index replication factor = k = 4 

Size of Chord ID in number of bits = m (=5) 

{ ) Client node 

Q Neighbors of the client node 

@ Terminal nodes where the index (of data D) is replicated 

A Server node (for data D) 

Figure 4.5 Lookup message propagation in the incentive-driven lookup protocol. 
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4.5.2 Basic Lookup Phase 

The lookup phase involves sending lookup messages towards all the terminal nodes of a data item, 

such that at most one message is sent out for all the terminal nodes that go through the same next 

hop neighbor - the terminal node selected is one which is closest to that neighbor. For example, in 

Figure 4.5, C sends a single lookup request message towards TQ3, instead of sending towards both Tu? 

and Td4. Due to the nature of the Chord routing protocol, with high probability, the number of hops 

required to go from C to TD3 is less than or equal to that required for going to TD4- As a result, the 

number of terminal nodes that are contacted during a lookup process may be less than the total number 

of terminal nodes for a data item. However, for simplicity and without altering the nature of the results 

obtained, we assume that all the terminal nodes for a data item are contacted and participate in a lookup 

transaction. Moreover, various request chains formed during the lookup phase would be node disjoint, 

as required by the system model in Section 4.3. The proof for the same is given in Appendix 8. 

4.5.3 Selfish Network Topology 

So far we have assumed that nodes form a Chord network and the lookup messages are forwarded 

in accordance with the Chord routing protocol. Now we investigate how correct is the assumption 

that nodes truthfully follow the Chord protocol. Since nodes are selfish and join a network in order to 

obtain data and maximize their profits, the manner in which they select neighbors has a bearing on how 

successful they are in achieving these goals. This argument definitely holds true for our protocol, since 

intermediate nodes take their cut (equal to their marginal costs) before forwarding a lookup request. 

Thus, fewer intermediate nodes generally translate to higher profits for the client. 

A node can make higher profits by being close to terminal nodes of as many different data items that 

it requires as possible. However, if the location of those terminal nodes is not known beforehand, then 

it might be advantageous for a node to greedily choose neighbors around the Chord network distributed 

at equal distances from each other. This strategy seems appropriate, especially since the data indices 

are also uniformly distributed around the network. Consider the network shown in Figure 4.6 in which 

node 1 fill the m (= 5) entries in its routing table as per the greedy routing approach instead. So if 

node 7 needs to send a message to the terminal node for data D, it can do it in two hops as opposed 
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to three hops required using Chord. In general, one can see that in at least half of the cases, when 

the data to be looked up has Chord ID mapping in region (a), the greedy routing scheme guarantees 

that the number of hops required to reach the corresponding terminal node is less than (or at most 

equal to) what is required by Chord. (This assumes that the network size, N, is large and the nodes 

are uniformly distributed around the Chord network). Even for the other regions, the greedy approach 

appears to perform comparably to Chord. This is because node 1 always first sends a lookup message 

to its neighbor that is closest (and with lower Chord ID) to the data Chord ID mapping, and from there 

on the message is routed using the Chord protocol. 

From the above discussion it appears that nodes do not have motivation to follow the Chord proto­

col, and can make higher profits by utilizing the fact that other nodes follow Chord. In such a scenario 

the whole routing service would break down, i.e., instead of 0(log N) routing provided by Chord, 

0(N/k) hops would be required due to the resulting sequential searches for the data indices. However, 

minimization of the number of routing hops by the greedy approach when everyone else follows Chord 

is not correct. We prove below that in a large network, on average the performance of greedy routing 

Size of Chord ID in number of bits = m (= 5) 

H Client node 
Number of nodes in the given region = H. 

Number of replicas in the given region = X 

Total number of nodes in the network = N 

Data index replication factor = k 

O Neighbors of the client node 

0 Terminal node for data D 
Hy is the j"1 neighbor of node i 

h, is the ith hop 

(c 

91 = N/m 

%_ = k/m 

Client using the Chord routing approach Client using the Greedy routing approach 

Figure 4.6 Comparison of Chord and the greedy routing approach. Network 
nodes are uniformly distributed in the Chord ID space. 
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approach is no better than that provided by Chord. 

Theorem 4. In a large network, on average the greedy routing approach for any node (say node 1 in 

Figure 4.6) requires the same number of hops as that required by the Chord routing approach. 

Proof For the ease of discussion, we assume that the routing table size is fixed for all the nodes in both 

the approaches and is equal to m (same as it is in Chord). 

In Chord, the average number of hops required to reach any node from a given node is 1 /2* (log N ) .  

Therefore, the average number of hops required to reach any one of the given set of n nodes (with Chord 

IDs in the range 0 — 2m_1) is ^ * log(^|) = \ * log(~). These n nodes are assumed to be located at 

equal distances from each other. Using these results we obtain the following values. 

Average number of hops required by the greedy routing approach to reach one of the k terminal 

nodes: The neighbors (i.e., the entries in the routing table) of node 1 in this case completely span 

the entire Chord ID space, i.e., they are uniformly located at equal distances from each other around 

the Chord network. Therefore, node 1 requires the same number of average hops to reach any of the 

terminal nodes. (The client first sends the request to its neighbor, which then follows the Chord routing 

protocol to further route the request). 

Thus, the average number of hops taken by the greedy routing approach to reach any data index 

replica is given as follows. 

(1 + ^ * log(y)) (4.6) 

Average number of hops required by the Chord routing protocol to reach one of the k terminal 

nodes-. Now we calculate the average number of hops required to reach a data index replica when node 

1 (and everyone else) follows the Chord protocol. It will be (1 + ^ * log(^)) when the terminal node 

is located in region (a), (1 + | * log(y )) when in region (b)4, and so on (up to m such terms). 

Therefore, the total average hops needed to reach any of the data index replicas are given as follows. 

(1 + \ *log(^)), (4.7) 

which is same as the number of hops given by Equation 4.6. 

"(I + 2 * log(^f))' 
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Figure 4.7 Comparison of Chord and the greedy routing approaches with regards 
to the hop-length. 

The results in Figure 4.7 from our simulations also confirm the fact that a node cannot benefit by 

selecting the greedy routing strategy. Figure 4.7 gives the difference in the observed number of hops 

when greedy routing is used as opposed to normal Chord routing. We did simulations for varying the 

number of total nodes and averaged the number of hops for 50 lookups performed for each network 

size. As can be seen, there is a difference of at most one hop in the two routing strategies and this is 

true for both small as well as large networks. Thus, a node does not gain an advantage by not following 

Chord. The following lemma follows directly from this result. 

Lemma 5. If others in a network follow the Chord protocol, it is a good strategy to do the same in 

order to maximize one's payoff. 

4.5.4 Protocol Overhead 

We must admit that the incentive-driven lookup protocol designed to address nodes' selfishness 

adds some overhead to the system. The overhead is primarily due to two reasons - message communi­

cation involved in formation of request chains, including validation of auction results by the client, and 
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the computations involved in message encryption and decryption to achieve message non-repudiation. 

Note that message non-repudiation is not needed when the client contact the terminal nodes for vali­

dating the auction results. 

The maximum message processing overhead is incurred by the client and server, but even that is 

only 0(\ogk). The number of messages processed by an intermediate node are O(l). The maximum 

number of nodes involved in a lookup process are 0(fc*log N), where k is the number of request chains 

and O(log TV) is the length of each request chain. Thus, we see that the protocol incurs a reasonable 

overall message overhead. Also, the protocol deals with the selfishness problem of nodes without 

relying on any centralized entity or deploying specialized trusted hardware in each network node. 

The protocol relies on giving incentives to nodes in order to achieve cooperation in message routing 

and data sharing. The incentives are typically in the form of reward or money that requires an electronic 

payment infrastructure, which can be prohibitively expensive. In order to overcome this problem, in 

Chapter 5, we propose a framework for emulating a system of virtual currency by using reputation as 

a measure of nodes' wealth. 

4.6 Summary 

In this chapter, we presented an incentive-driven lookup protocol for searching and trading data in 

P2P networks. We developed a distributed resource pricing strategy, based on Vickrey auction, to be 

used in selfish environments, where collusion among nodes is possible. In the process, we addressed 

a well-known problem of Vickrey auctions - that of a selfish auctioneer, and provided a solution for 

dealing with it. Our proposed protocol takes selfish behavior of network nodes into account, and ensure 

that the rewards received by them are maximized if they adhere to the protocol steps. Specifically, the 

proposed incentive-driven lookup protocol, using the Vickrey auction based pricing strategy, satisfy all 

the service goals that were identified in Section 4.3.1. Our use of Vickrey auction for resource pricing 

and handling of Threat Model D enforces that truth-telling, with respect to revealing marginal costs 

of providing service, is the best strategy for the intermediate nodes (service goal 2). Moreover, since 

payoffs received by nodes are more than their marginal costs, nodes are motivated to serve others, i.e., 

provide data and forward lookups (service goal 1). Furthermore, the reward distribution mechanism, 
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as described in Section 4.4.4, meets service goals 3 and 4. 

We also investigated the applicability of Chord network topology in forming connectivity among 

selfish nodes. We showed that in the absence of privileged network information, the best strategy for a 

node is to follow Chord, provided that others also follow the Chord protocol. 
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CHAPTER 5. A FRAMEWORK FOR REPUTATION MANAGEMENT AND ITS 

APPLICATION FOR IMPLEMENTING A SYSTEM OF VIRTUAL CURRENCY 

5.1 Overview 

In recent years, increasingly varied activities are performed on-line, over great distances. Formerly, 

geographically bound communities are rapidly fused into an expansive collection of world-wide vir­

tual ones. Familiar centralized methods for establishing trust are overwhelmed by the vastness and 

complexity of open networks. We need to automate methods for trust establishment that are robust 

enough even when a large fraction of the participants behave selfishly. We believe that future accep­

tance and success of P2P systems depend mostly on whether or not trustworthiness and reputation of 

the constituting entities can be established in a reliable and robust manner. 

In this chapter, we describe a reputation management framework for large-scale peer-to-peer net­

works, wherein all nodes are assumed to behave selfishly. By selfish we mean that nodes aim to max­

imize their own reputation in relation to others in the network. The proposed framework has several 

advantages. It allows reputation to be used as a measure of nodes' wealth and for emulating a system 

of virtual currency. The framework is scalable, provides protection against attacks by malicious nodes, 

and minimizes the problem of free-riding. Nodes can evaluate the reputation of others even without 

having previously interacted with them. The above features are achieved by developing trusted com­

munities of nodes whose members trust each other and cooperate to deal with the problem of nodes' 

selfishness, and possible maliciousness. 

The concept of currency can be used for designing network operation protocols for various dis­

tributed systems [24]. Such systems require giving incentives or payoffs to nodes in order to make them 

cooperate. Adopting a similar approach, several incentive based protocols exist that reward nodes in 

the form of increased credit or currency for their cooperation in sharing resources. In all of these cur­
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rency or "money" is used as a standard tool to achieve the desired network goals. However, a limitation 

of such schemes is that they either assume the existence of an infrastructure for electronic currency, or 

some trusted centralized entity that maintain the debit/credit values of the nodes. These assumptions 

can be difficult to realize in P2P networks. 

We suggest that reputation can be used as a basis to provide and procure services. These services 

can range from sharing data, such as audio/video files, to providing complex distributed processing 

capabilities as in SETI@Home. In such on-line economies, service providers are suitably compensated 

for the resources/services they provide. The service providers are willing to serve nodes with higher 

reputation to increase their own reputation. The earned reputation in turn makes it easier for them to 

obtain services in future. Thus, the objective of nodes is to maximize their reputation as viewed by 

everyone else in the system. 

Our proposed framework can be used for implementing a system of virtual currencies, which are 

light-weight, not linked to real-world currencies and which, in fact, are not legal-tender. Since the 

virtual currencies are not tied to real money, they incur lower transaction costs, and minimize mental 

decision costs [67] on users for participating in a P2P system. 

In order to implement a system of virtual currency, we identify the following minimum guarantees 

that a reputation management framework need to provide. 1) It should be easier for nodes with higher 

reputation to access network services. When two nodes contend for a service and only one of them can 

be served, a node with higher reputation should be serviced. For this to happen the service provider 

should have incentive to serve the more reputed node. Our framework provides this by ensuring that 

the reputation of a node increases more by serving a higher reputation node. This is in contrast with 

traditional reputation management schemes, where service providers make no distinction between the 

type of nodes (whether of low or high reputation) being served. As an example, say a distributed 

computing system includes a printer P, and two users A and B. If P receives a printing request from 

A and B at the same time, but it has resources (paper or cartridge ink etc.) to fulfill only one request, 

then it is more advantageous for the printer to service the user with a higher reputation. 2) Moreover, 

like real currency it must be possible for nodes to protect their reputation against attacks by malicious 

nodes. 3) Furthermore, malicious nodes, either individually or in collusion, should not be able to falsely 
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increase their own reputation. 

However, there are important distinctions between real currency and using reputation as its sub­

stitute. Real currency can precisely be measured. But reputation is an estimation and different nodes 

may assign different reputation to a node. Therefore, valuation error is inherent in systems using repu­

tation as a measure of nodes' wealth. Moreover, unlike real currency, reputation gets depleted through 

expiration and malicious behavior, and so one needs to constantly provide service in order to maintain 

high reputation. Furthermore, reputation is not necessarily spent or reduced when acquiring service(s), 

which is not true if real currency is used. This further has the consequence that, unlike real currency, 

sum of the reputation values of two participants engaged in a service transaction may not be the same 

before and after the transaction. 

5.1.1 Motivation 

To the best of our knowledge this is the first attempt in using reputation for implementing a system 

of virtual currency in P2P networks. In addition to develop this novel application, our research is moti­

vated by several common problems observed in many of the reputation management systems proposed 

till date. Some of these problems that we attempt to overcome in our proposed reputation management 

framework are listed below. 

e Most of the existing systems rely solely on the positive or negative feedbacks to evaluate and de­

termine the reputation of nodes. The feedback only approach suffers from in-accurate reflection 

of past experiences of nodes in the respective community and can also be easily manipulated by 

malicious nodes. 

• Most of the existing systems assume feedbacks are honest and unbiased, and lack ability to 

differentiate feedbacks obtained from less trustworthy nodes and those from trustworthy nodes. 

» Most of the existing systems lack temporal adaptivity. They either count all the transactions 

history of a node without decaying the importance of old transactions in the far past, or only 

count the recent transactions. 
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• Several existing systems do not account for the possibility that an entity typically has a group of 

allies and partners that it trusts more than others. 

» None of the systems to the best of our knowledge account for the possibility wherein malicious 

nodes target specific good nodes to reduce their reputation. 

5.2 Related Research 

We divide this section into two parts. The first part explores several other reputation management 

systems that have been proposed for P2P systems. Then in the second part we look at various research 

projects that attempted to integrate currency into the operations of P2P networks. 

5.2.1 Comparison with Other Reputation Management Systems 

Several assumptions that are commonly employed in reputation/trust management literature simply 

do not hold when using reputation as a measure of nodes' wealth. Most importantly, nodes may behave 

selfishly, and thus the amount of positive information available may be limited. On the other hand 

negative information may be readily propagated. In addition, nodes have incentive to provide poor 

recommendations and actively downgrade the reputation of others. 

In past several reputation management systems [68, 69, 70, 71, 48, 72, 74] have been proposed 

specifically for P2P systems. Almost all the proposed schemes assume that majority of the nodes 

truthfully follow a given protocol, so as to identify the malicious nodes in the system. However, this 

assumption does not hold true when reputation is also used as a measure of nodes' wealth. This is 

because everyone now has incentive to behave in a manner so as to maximize their own and minimize 

others' reputation. Some examples of such a behavior include the following - limiting the amount of 

positive information regarding others, propagating negative information about others' behavior, giving 

poor recommendations, etc. A reputation management framework for such systems should therefore 

explicitly take into account nodes' selfishness, and assume that nodes would follow a given protocol 

only if it maximizes their own reputation. 

Reputation management systems inadvertently rely on recommendations from good nodes to eval­

uate the trustworthiness of unknown nodes in the network. It is assumed that when a node request 
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its neighbors of their view on some target node, then the majority (if not all) would return their true 

assessment of that node. For example, in [75] agents when requested sincerely share their views with 

each other. Such assumptions do not hold true for selfish nodes. 

Reputation management schemes, such as [71, 76], do not scale well to large systems. This is 

because they assume global knowledge and require nodes to store information about every other node 

in the system. This can be very difficult to implement in large-scale P2P systems. 

In a large distributed system, malicious nodes can easily collude and launch complicated hard to 

detect attacks to break down the reputation management systems. Several earlier proposals [77, 73,78] 

do not take into account such threat possibilities. 

The reputation ratings generated by our framework identify the degree of trustworthiness of nodes. 

Proposals such as [72] and [73] consider two and four, respectively, different possible trust levels. This 

coarse granularity makes it difficult to reason about trust explicitly, as it cannot differentiate between 

nodes with the same trust level even though they provide different levels of services. Also, the relative 

reputation rating system of [71] makes it difficult to distinguish good nodes from bad ones. 

The authors in [48] develop a trust and security architecture for a routing and node location service 

that uses a trust protocol, which describes how honest nodes perform. On the other hand, the reputation 

management framework presented in this chapter is not just limited to enable cooperative routing, but 

instead is generalized enough to be used irrespective of the nature of services being traded in the 

network. 

The NICE system [74] aims to identify rather than enforce the existence of cooperative peers. It 

claims to efficiently locate the generous minority of cooperating peers and form a clique of users all 

of whom offer local services to the community. The system takes a novel approach, rather than using 

economics to model trust, it proposes using trust to model expected service prices. 

5.2.2 Comparison with Other Currency Systems 

MojoNation [79] attempted to integrate currency into P2P file sharing. MojoNation was not very 

successful primarily because it employed a complex and centralized currency model. Moreover, Mo­

joNation focused on file swapping rather than a generic P2P resource market for sharing computational 
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resources. 

KaZaA [10], which is currently the most popular P2P system, adopts a currency scheme to incite 

users to upload files. However, the KaZaA currency is limited to the KaZaA applications. On the other 

hand, the currency paradigm proposed in this chapter is useful for generic P2P applications. 

The KARMA framework [28] uses currency to incite peers to contribute resources. The frame­

work is completely distributed and has been designed to integrate with a structured P2P system. The 

biggest drawback of KARMA is that no performance results are available regarding its effectiveness 

and efficiency. 

The authors in [26] also proposed a light-weight currency paradigm that allow peers to trade re­

sources and services among each other. The currencies implemented in [26] are not linked to real-world 

currencies, and are transferable among applications - that is, an entity can earn currency in the context 

of one application and spend the same currency in the context of another. Moreover, the paradigm does 

not impose a single currency in the system, i.e., any entity can issue its own currency. This creates an 

ultra-free P2P market economy with multiple, competitive currencies - with some currencies having 

more value than others. The only drawback of the proposed currency system is that it assume that the 

currency issuers are trustworthy and run on dedicated servers. 

The PPay protocol proposed in [80] is secure and efficient, however, it relies on a centralized trusted 

broker for its correct operation. 

5.3 Model Assumptions and Limitations 

We assume a P2P network where nodes' wealth is measured by their reputation. Nodes are selfish 

in the sense that their goal is to obtain desired services and maximize their reputation relative to others. 

Both the service providers and receivers benefit by obtaining accurate trustworthiness assessment of 

each other. Service providers want to serve highly reputable clients in order to maximize their own 

reputation, and service receivers want to maximize the quality of service they receive. The service can 

be as simple as forwarding a routing message or as complex as downloading data, sending a task for 

remote execution etc. For concreteness, in the remainder of this chapter, we use file sharing as the 

example of service being provided in the network. 
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Each node has a specific area of interest and provides service related to that interest category only. 

We assume that a node supports at most one service category, and the service category of a node, say a, 

is denoted by S (a). For example, each node download and serve audio/video files belonging to a certain 

music group or artist only. Service categories themselves are denoted by S — {Si, £2, • • •, Sn}. The 

network incurs a cost equal to Cs for completing service Sj, V i. This cost is a well-known parameter, 

and is due to network bandwidth consumed, buffer space occupied etc. for completing a service, for. 

For simplicity, Cs is assumed to be constant for all services and/or location of service providers and 

receivers in the network. 

There may be malicious or bad nodes, which provide bad service and/or aim to disrupt the normal 

operations of a network. Example of malicious activities include spreading viruses, propagating wrong 

information regarding others, etc. Non-malicious or good nodes, although selfish, do not provide bad 

service or try to disrupt the operations of a network. Good nodes are differentiated based on the 

probability, referred to as service probability, with which they provide service, if selected by a client. 

A node either belongs to a set of good nodes (Good) or bad nodes (Bad). The total number of nodes 

are denoted by N (=\Good\ + \Bad\). 

A node a maintains three sets Gooda, Bada, and (f>a, which are the set of good, bad, and unknown 

nodes, respectively, as perceived by it. $a represents the set of nodes about whom there is insufficient 

(or no) information, which allows them to be classified as either good or bad. Initially all the nodes 

are put in </>a. With time, as more experience is gained about these nodes, their reputation ratings 

are updated and if appropriate they are moved to either Gooda or Bada. For each positive (negative) 

information that a node receives, it increases (decreases) the reputation of the service provider based 

on the reputation of the service receiver. 

Nodes form trusted communities whose members trust each other to be good nodes and rely on 

each other for protection from malicious nodes. Such communities are called trust groups, denoted 

by TGrps. The members of a TGrp share the same reputation as viewed by the outside nodes. For 

example, if the reputation of a TGrp with \TGrp\ number of nodes is R, then the reputation of an 

individual member node is R/\TGrp\. We assume that each node belongs to at most one TGrp. TGrp 

members are also referred to as peers. TGrp of a node a is denoted by aTGrp and the same notation 
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is used to denote the set of nodes that comprise this TGrp. Thus, aTGrp is a set of nodes consisting of 

a and its peers. If two nodes a and b are members of the same TGrp we say aTGrp = bTGrp, and if 

they are not we say aTGrp / bTGrp. 

Reputation of a node is a decaying function of time, i.e., nodes need to continuously share resources 

and provide services. A node's reputation is incremented only if it serves someone outside its TGrp.1 If 

this is not the case then malicious nodes can easily collude and increase their reputation by only serving 

each other. The reputation of a node is updated after each service transaction, and is represented as 

follows. 

•^provider—new = /{^-provider—oldi ^-receiver) (5-1) 

Here, / is a function that takes as input the reputation of a service provider (Rprovider-oid) and receiver 

(RreœiverX and outputs an updated reputation value for the service provider (Rprovider-new)- The 

output value is directly proportional to the reputation of the service receiver. Thus, nodes have incentive 

to serve reputable good nodes. The above expression holds true for updating a TGrp reputation also, 

i.e., if node a serves node b, the reputation of aTGrp is increased in accordance with the reputation of 

bTGrp. 

5.3.1 Service Information Propagation 

If a node provides good service then only the network neighbors and TGrp members of the con­

cerned nodes (i.e., the service provider and receiver) become aware of the service transaction. This is 

because selfish nodes do not propagate positive information in order to prevent others from increasing 

their reputation. On the other hand, negative information is readily propagated to lower the reputa­

tion of the affected nodes. We assume that before a client receives service, it provides information on 

its neighbors and TGrp members to the service provider. At the end of a successful service comple­

tion, the client signs a satisfaction certificate (a form of digital certificate) and gives it to the server. 

The satisfaction certificate is a proof that the server provided good service to the client. The server 

on receiving the satisfaction certificate sends it to the nodes known to it. These nodes (except the 

peers), however, do not have incentive to further pass on this positive information. For example, if 

'As we would see in Section 5.5.2, when a node serves someone in its TGrp, only the peers increase the serving node's 

reputation. 
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node a provides good service to node b, the set of nodes that receive this information is given by 

a T G r p  ( J  b T G r p  | J  J V ( a )  [ j  A f ( b )  I J  M  { a T G r p ) .  

On the other hand, if a server provides bad service, then that information is readily propagated, 

first by a client to the nodes known to it and then recursively to other nodes known to each of them. 

As a result, negative information is available to a large fraction of the total nodes and its propagation 

can be assumed to follow a flooding mechanism. For example, if node a provides bad service to node 

b, the set of nodes that receive this information is given by V. Although, it is not straightforward 

for a node that received bad service to prove that fact, it can still send a complaint against the server. 

The complaint message contains digitally signed information about the service provider from which 

bad service was received. Since, complaints can be easily (even falsely) initiated, it is difficult for 

the receiving nodes to ascertain the validity of such messages, and consequently reputation of both the 

nodes (complainant and complainer) is reduced. The decrease in each node's reputation is in proportion 

to the other node's reputation. This works as a disincentive for selfish good nodes to falsely propagate 

negative information. Still, sending a complaint against a malicious node does not significantly affect 

a good node, as malicious nodes typically have low (zero or negative) reputation. 

5.3.2 Reputation Management Framework Outline 

The reputation management framework presented in this chapter addresses the following issues. 

1. TGrps formation 

a. How a node is selected for entry into a TGrp 

b. How a node is evicted from a TGrp 

c. How membership to a TGrp is verified 

2. Use of TGrps for reputation management 

a. How positive information about nodes is handled 

b. How negative information about nodes is handled 

Simulations are carried out to establish the following properties of the framework. 
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1. TGrps that provide better service have higher reputation 

2. Bad nodes are quickly identified and isolated by good nodes 

3. It is difficult for bad nodes to falsely increase their reputation 

4. It is difficult for bad nodes to falsely decrease the reputation of good nodes 

5.4 Trust Groups 

TGrps provide a layer of abstraction such that all the nodes constituting a TGrp are considered 

equally trustworthy by the outside nodes. Therefore, reputation value is calculated for a TGrp and not 

for the individual member nodes. This abstraction (although it somewhat reduces the accuracy) pro­

vides robustness to reputation estimation due to the following reasons. First, positive information is not 

widely available, and second, negative information can falsely be initiated and is readily propagated. 

Due to these factors making an accurate assessment of a node can be extremely difficult. On the other 

hand, by knowing the reputation of only some members, one can estimate the trustworthiness of other 

unknown nodes that are part of the TGrp. This is based on the premise that TGrp members behave 

similarly, i.e., good nodes will include other good nodes only in their TGrp. 

Since nodes have limited awareness, the information available at different nodes may be inconsis­

tent. Therefore, formation of TGrps can be a non-trivial task. Bad nodes can also form trust groups, 

but we reserve the term TGrp to refer to a community of good nodes only. 

5.4.1 Peer Selection Criterion 

The most important requirement for selecting peers and forming a TGrp is that the constituting 

members trust each other to be good nodes. This is because the reputation of a node is determined by 

the reputation of its TGrp, which in turn depends on the aggregate service provided by all the member 

nodes. Thus, new members are carefully screened before being admitted to a TGrp. Likewise, new 

nodes carefully select which TGrp (if any) they should join. 

Another important criterion for forming a TGrp is to ensure that nodes have no (or minimum) 

conflict of interest among themselves. Conflict of interest arises if a node suffers a potential loss by 
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increasing the reputation of one of its peers. This can happen, for example, if two peers having the 

same area of interest contend for a resource. If the resource can be awarded to only one of them, then 

it is in each node's best interest to not cooperate, and in fact lower the other's reputation. Therefore, 

we assume that TGrp members belong to different service categories. Moreover, peers do not have any 

direct incentive to serve each other, because a node's reputation is incremented only if it serve someone 

outside its TGrp. If this was not the case then malicious nodes can easily collude and increase their 

reputation by only serving each other. 

5.4.2 Trust Groups Formation 

In this section, we provide guidelines on how TGrps are formed. The guidelines presented here 

are used to make our discussion more concrete, and should be used to get a better understanding of the 

requirements of TGrp formation. Depending on an application scenario additional rules may be used 

for forming TGrps. 

Initially nodes do not belong to any TGrp, i.e., 

Vî 6 V,iTGrp = {%} and 

Goodi — {null}, Badi = {null}, and f a  =  J \ f ( i )  

Nodes at this time are in an observation phase, where they evaluate other nodes based on the in­

formation they receive about them. It should be noted that positive information is highly restricted, 

especially as nodes do not have TGrp members to propagate information for them. Negative informa­

tion on the other hand is readily propagated and available throughout the system. 

Nodes gradually build reputation of others in the network. When the reputation of a node reaches 

a predefined threshold Rth.resh.oid, that node can be contacted to form a TGrp. Rthreshoid is called the 

TGrp entry reputation threshold. The contacted node agrees to form a TGrp, if it also rates the contact­

ing node highly. The threshold used by the contacted node, say RacCepb is equal to (or marginally less 

than) Rthreshoid• Raccept is called the TGrp acceptance reputation threshold. Both these reputation 

threshold values are fairly high (set according to system requirements), since it is critical for nodes to 

have high confidence in the nodes they partner with. The threshold values can be set equal to one's own 

reputation value, i.e., a good node on finding another node with equal or higher reputation can contact 
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it to form a TGrp. Additionally, both the nodes ensure that they did not receive complaints against 

each other for a long period of time, called the observation duration. The observation duration can be 

understood to mean the maximum time period when a bad node does not provide malicious service. 

With time several TGrps consisting of small set of nodes are formed. The visibility of nodes 

increase because they are now also aware of the transactions involving their peers. When the reputation 

of some other non-member node reaches Rthreshoid» it can be invited to join the TGrp. Here Rthreshoid 

is set equal to the lowest reputation value among all the existing member nodes. The rationale behind 

this is - if a member node with the lowest reputation value can be included in a TGrp, then an outsider 

with an equal or higher reputation should also be considered trustworthy enough to be included in the 

TGrp. The evolution of TGrps is depicted in Figure 5.1. 

Figure 5.2 presents the decision rule, referred to as the join request rule, used by node a to decide 

whether to ask node b to join the TGrp or not. 

Neiwork Nodes 

TGrp(s) Evolution 

Trust Groups 

Figure 5.1 Formation of various Trust Groups (TGrps) as nodes gain awareness 
about each other. 

1) if (6 ^ Bada) A (Rb > Rthreshoid) A (S(b) S(i), Vi £ aTGrp) 
2) then make a group join offer to 6; /*if b has high reputation and there is no conflict of 
interest between it and any of the existing TGrp members*/ 

Figure 5.2 Join request decision rule 

The corresponding decision rule, referred to as join accept rule, used by b to decide whether to 

accept the join offer or not is given in Figure 5.3. 
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1) if (i g Badb,Vi E TGrpa) A (Ri > RaCcept, € TGrpa) 
2) then accept the group join offer; 

Figure 5.3 Join accept decision rule 

In the above figures the service category S(b) of node b is known to node a. This is because node 

a has information, from the satisfaction certificates, about the service provided by node b in the past. 

Moreover, Rthreshoid and RaCcePt are calculated as follows. 

Rthreshoid ~ Tïll7l[Ri |z G ttTGvp] 

Raccept = R-b 

The join request decision rule presented above is simplified, in the sense that we omitted consider­

ation of complications that can potentially arise when there is a conflict regarding whether to bring in 

a new member or not. For example, even though node c might have the same area of interest as node 

b, still a (where aTGrp = cTGrp) might include b in the TGrp (and remove c, if required) because 

of b's higher reputation. Even though we do not explicitly address such cases to keep the decision rule 

simple, it is not difficult to see that removing c from the TGrp would require a consensus involving 

all the peers, because otherwise, it breaks the cohesiveness of the TGrp by alienating the non-agreeing 

TGrp members. The whole purpose of a TGrp is that nodes within it work in unison and trust each 

other more than anyone outside the group. Thus, it is reasonable to assume that nodes abide by the 

above rule for TGrp expansion. 

Once a node is admitted to a TGrp, all the member nodes set the reputation of the admitted node to 

that held by the admitting node. 

5.4.3 Trust Group Dynamics 

In the previous section, we showed how TGrps are created and expanded. In this section, we look 

at the reverse process, i.e., how nodes leave or are forced out of a TGrp. Normally, it is difficult 
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1) if (Ri < 0) A (I € T) 
2) then evict i\ /* majority of nodes in T has reputation of i less than 0 */ 

Figure 5.4 TGrp eviction rule 

for a malicious node to join a TGrp. A stringent screening function is applied by the member nodes 

before admitting a new node into their group. Still, it is possible for malicious nodes to join TGrps by 

providing good service early on till they get admitted to some TGrp. On joining a TGrp they can then 

provide bad service and/or send false negative information about good nodes. In such situations it is 

important to identify and remove such nodes from the TGrp. This removal process is also termed as 

eviction. In Figure 5.4, we describe another simple decision rule, termed as eviction rule, that is used 

by nodes of some TGrp T to decide if a member node i should be evicted. 

A member node is evicted only if it provides bad service several times, and its reputation goes 

below zero as viewed by the majority of the TGrp members. This is because peers trust and give each 

other benefit of doubt even if complaints are received against them. Several external factors can cause 

nodes to provide bad service, like broken connection to ISP, network congestion, unintended virus 

uploads, etc. A member node might also possibly be a victim of false negative information propagated 

against it by malicious nodes. Thus, member nodes are given a lot of leeway before being evicted 

from the TGrp. All the good nodes in a TGrp would be in agreement if a particular node needs to be 

evicted. This is because everyone receive the same negative (and positive) information regarding the 

target node. Thus, arriving at a consensus for evicting a node should not be difficult. 

Evicted nodes are marked by storing information about them. By this we mean that the Rthreshoid 

values for re-admitting them into the TGrp are suitably increased (based on the network environment 

and application requirements), say by a factor of 2. Evicted nodes are put in set Badi by all the peer 

nodes. In addition, a node's eviction is made known to as many other nodes as possible. Since eviction 

signals negative information about a node, propagation of this information follows the same approach 

as that for normal complaints. Other nodes on receiving the eviction information increase the Rthreshoid 
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value for the evicted node in accordance with the reputation (as viewed by them) of the evicting TGrp. 

Rthreshoid, — Rthreshoid * (1 + RevictingTGrp) (5.2) 

Here, RevictingTGrp is the reputation of the TGrp from which the node is evicted. 

5.4.4 Trust Group Membership Validation 

It is important for nodes to be able to correctly prove their credentials regarding their TGrp member­

ship. Moreover, malicious nodes should not be able to fake their membership to some highly reputable 

TGrp. Furthermore, as nodes join and leave a TGrp, it should be possible to seamlessly update TGrp 

membership information. 

TGrp members create an affiliation certificate that include the IP addresses of all the nodes that 

comprise the TGrp and successively encrypted by each node's private key. For example, say nodes 1, 

2, and 3 form a TGrp. The IP addresses and private keys of nodes are represented by I Pt and E^, respec­

tively (V; 6 {1,2,3}). The following is the affiliation certificate forthis TGrp, £3 (#2 (Si (/-Pi, IP2,IP^))). 

One can obtain the public keys of 7, 2, and 3 and verify that they all belong to the same TGrp. The 

affiliation certificate also contains a time stamp such that old certificates cannot be used by (evicted) 

nodes to falsely claim membership to a TGrp. 

A node in order to prove its membership to a TGrp can include the affiliation certificate (contain­

ing its IP address as well as that of the TGrp members) when communicating with other nodes. Other 

nodes on receiving the affiliation certificate can update (if they do not already have) their information 

about the TGrp. When a TGrp member is evicted, the remaining member nodes create a new affili­

ation certificate and include it in their message for propagating the information that a node has been 

evicted. This enables TGrp membership information to be updated by a large fraction of the nodes that 

receive the new affiliation certificate. Likewise, when a new node joins a TGrp, the updated affiliation 

certificate includes information about the new node. 

5.5 Reputation Management Algorithm 

Since nodes behave selfishly and benefit by reducing others' reputation, one cannot rely on rec­

ommendations, except from the peers, to evaluate the trustworthiness of nodes. Thus, only direct 
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experience and information received in the form of satisfaction certificates and complaints can be used 

to construct the reputation. The following - unreliable recommendations, limited reach of positive in­

formation and possibility of malicious nodes in large systems, are the main constraints of a reputation 

management framework for selfish nodes. 

In view of the above constraints, we define the following goals for our reputation management 

framework. With high probability, nodes with higher reputation should get better services, i.e., nodes 

which provide good service should get good service in return. Moreover, malicious nodes should not 

be able to fake high reputation and lower the reputation of good nodes in any significant manner, i.e., 

good nodes should be regarded as good and bad nodes as bad by all good nodes in a system. The 

chances of a node being identified correctly is directly proportional to how good or bad it is, i.e., its 

service probability (probability with which a node services a request). These goals are summarized 

below. 

* Good ¥> Badi Vi € Good, i.e., good nodes should not be viewed as bad by other good nodes. 

e Bad =£> Good, Vz 6 Good, i.e., bad nodes should not be viewed as good by good nodes. 

It must be noted that these goals cannot be perfectly achieved in a large and dynamic P2P system 

with imprecise information. Therefore, the proposed framework strives to achieve these goals with 

high probability only. In our discussion, all services are considered at par with each other. Thus, the 

reputation of a service provider depend on the clients it serve and not on the category of service it 

provides. Similarly, all bad services are indistinguishable from each other, i.e., the reputation of a 

service provider is reduced based on the reputation of a client that sends a complaint against it. 

5.5.1 Reputation Representation and Calculation 

A node computes the reputation of every other TGrp that it is aware of. Since the reputation of a 

node is simply the reputation of its TGrp divided by the number of nodes in the TGrp, we only describe 

how the reputation of a TGrp is estimated. Nodes that are not part of any TGrp are also considered as 

TGrps comprising of a single member node. In addition to maintaining the reputation of other TGrps, 

a node also maintains the reputation of its peers. This is important so as to determine when to add a 

new member or to remove an (possibly malicious) existing one from the TGrp. 
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Since the information available at nodes vary, nodes may have different views or reputation of the 

same TGrp. The consistency in views is proportional to the service probabilities of the member nodes 

of the target TGrp. A very active TGrp whose member nodes provide service often, is considered good 

by a large fraction of the nodes. Whereas, a TGrp whose member nodes provide service infrequently, 

is viewed as good by only a few and unknown by a large fraction of the nodes. Thus, reputation of a 

TGrp and service probabilities of its members are directly related to each other. 

The reputation of a TGrp is always a value between -1 and 1. Higher value corresponds to higher 

reputation, and vice versa. More precisely, good nodes have positive reputation ratings and bad nodes 

have negative ratings, and value zero is assigned to nodes in set (p. The reputation value is updated 

after every time period r, which is a well-defined system parameter, r can be either timer-driven or 

event-driven, for example, based on the number of requests observed by a node. A TGrp's reputation 

is dependent on two factors - number of times its members provided service (and to whom) out of the 

total service instances in the current time period, and its reputation at the end of the last time period. 

For illustration, we consider an observer node o and see how it update its reputation of other TGrps (and 

also its peers). Before that we define the term network view that is useful in our subsequent discussion. 

Definition 3. Network view of an observer node, say o, represented by ro, is the set of all nodes that o 

is aware of This set will include, o's own ID, its network neighbors, its TGrp members, and other nodes 

that it becomes aware of upon receiving messages containing satisfaction certificates and complaints. 

For simplicity, we assume that the size of this set can only grow as o learns about new nodes. In a 

dynamic system, it is possible for both network neighbors and TGrp members to change. However, as 

long as these nodes are still part of the network, it is useful to include them in one's network view so 

as to be able to send satisfaction certificates to them in future. 

For each TGrp, o maintains a reputation counter CoaTGrp> VaTGrp Ç T0. CoaTGrp is initialized 

to zero at the start of every time interval. The counter is increased (decreased) whenever a member of 

aTGrp provides good (bad) service. Since one gets higher reward for serving more reputable nodes, 

the increase (decrease) in the counter value is proportional to the reputation of the node being served 

(cheated). More precisely, if a serves b, where a, b G ro and aTGrp ^ bTGrp, o updates aTGrp's 
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reputation counter as follows. 

CoaTGrp = 1 + CoaTGrp + CobTGrp/\bTGrp\ (5.3) 

At the same time bTGrp's counter is decreased by Cs, which is the cost that the network incurs 

due to the service transaction and is charged to bTGrp. Therefore, we have, 

CabTGrp — CobT Grp Cs (5.4) 

If a cheats b. the counters for both aTGrp and bTGrp are decremented as follows. 

C0aTGrp = C0aTGrp C0bTGrp /1 bT Grp\ 

C0bTGrp — CobTGrp CoaTGrp / \ (lT Grp\ (5.5) 

For example, say there are three nodes a, b, and c in ro, that belong to TGrps aTGrp, bTGrp, 

and cTGrp, respectively. Let the cardinality of all the three TGrps be one. The counter values 

CoaTGrp, C0t,TGrp> and C0CTGrP are initially set to zero, o first receives a satisfaction certificate stating 

that a provided service to b. As a result, CoaTGrp is updated to contain value 1. Subsequently, if c 

provides service to a then using Equation 5.3, COCTGrp is updated to value 2 (=1+1). Now, if b is a bad 

node and sends a complaint against c, CQbTGrp is reduced to -2, but C0CTGrp remains unchanged. After 

these three messages, a and c are put in Gooda, and b in Bad0, respectively. In other words, o views a 

and c as good, and b as a bad node. 

As can be seen, if o receives a complaint message that a cheated b, it decrements the reputation 

counters for both aTGrp and bTGrp. This is because complaints can be falsely initiated and it is 

difficult for o to ascertain their validity. However, it is known that one of the nodes a or b acted 

maliciously and therefore, the counters for both the TGrps are reduced in proportion to the others' 

current value. This simple rule ensures that malicious nodes suffer more (incur a larger reduction 

in counter values) than non-malicious nodes. This is because non-malicious or good nodes provide 

service to others and typically have higher counter values. This also prevent good nodes from falsely 

propagating negative information against other (good) nodes. Here we assume that of the two nodes 

indicated in any complaint, one belongs to Good and the other to Bad. 
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At the end of the current time interval, o calculates the reputation of all the TGrps in F0 using the 

following equation. 

%;r,, = n , ViTGrp Ç T. (5.6) 
^iTGrpCTo^oiTGrp 

The denominator in Equation 5.6 represents the sum of counter values of all the TGrps that o is 

aware of. The reputation (R^fcrp) °' TGrp, aTGrp, obtained above for the current time interval is 

combined with the TGrp's reputation at the end of the previous interval (represented by RpJ^Grp) to 

obtain its new reputation value (RoaTGrp) as shown below. 

= ( * %Grp + U ' 0 * (5.7) 

Here, ( is the importance given to the current performance of a TGrp as opposed to its past per­

formance for estimating its reputation. In general, when it is not important (or is implied) to specify 

the observer node (here o), the reputation of aTGrp is simply written as RaTGrP- The reputation of 

any node, a, represented by Roa, is given as RaTGrp/\RaTGrp\- Again, when it is not important (or is 

implied) to specify the observer node, the reputation of node a is simply written as Ra. 

At the end of every time interval, nodes with reputation values below zero are put in Bad0. If a 

TGrp has a reputation value of less than zero, then all the member nodes are considered as malicious 

and put in Bad0. Specifically, the sets Good0, Bad0, and 4'u are updated at the end of every time period 

of duration r, as follows: 

Bad0 = {iTGrp\RiTGrp < 0,ViTGrp G F0} (5.8) 

Good0 = {iTGrp\RiTGrP > 0,ViTGrp 6 F0} (5.9) 

4>0 = {iTGrp\RiTGrp = 0,ViTGrp G F0} (5.10) 

In the above, we have shown how the reputation of different TGrps (including one's own) is cal­

culated by o. The update of others' reputation as viewed by o can be summarized as given in Figure 

5.5. 

In the above, we have shown how the reputation of different TGrps (including one's own) is cal­

culated by o. In addition, o calculates the reputation of each of its peers by maintaining a counter Cm 

for each of them, Vi,i G oTGrp. These counters are handled similarly to those for the TGrps; their 
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GoocL Bad Unknown,, Good0 Bad0 Unknown^ 

Good0 + 0 + Good0 - 0 0 

6ad0 + 0 + Bad0 - 0 0 

UnknownG + 0 + Unknown0 - 0 0 

(a) (b) 

Figure 5.5 Figures (a) and (b) represent the change in reputation of a service 
provider, as viewed by node a, upon receipt of a satisfaction certifi­
cate and complaint message, respectively. Row entries represent the 
reputation of a service provider, and column entries that of a service 
receiver, before the receipt of the service transaction message. Here +, 
-, and 0 represent the increase, decrease, and no change, respectively, 
in the reputation of the service provider. 

exact update mechanism is given in the next section. Peer reputation values are given by the following 

equations, which are analogous to the ones used above for TGrps' reputation calculation. 

cn 

^j'J'GrpCr 0 C0jTGrp 
(5.11) 

^ = + (5.12) 

In Equations 5.6 and 5.11 above, it is assumed that all the reputation counter values are greater than 

or equal to zero. The reputation counters with negative values are dealt with similarly (and separately). 

5.5.2 Reputation Counter Update Algorithm 

The algorithm presented here is used by good nodes to update the reputation counters for different 

TGrps as well as their peers; the reputation values based on these counters are calculated at the end of 

every time period of length r, as explained in Section 5.5.1. As before Good0, Bad0, and (f)a represent 

the set of good, bad, and unknown nodes, respectively, as viewed by an observer node o. 
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The underlying principle of the algorithm is that a TGrp's reputation is dependent on the reputation 

of the TGrp(s) it has served (or cheated). Also, reputation ratings are increased by non-TGrp members 

only if the service provider and receiver belong to different TGrps. We divide the algorithm into two 

categories - for dealing with positive and negative information, respectively.2 

Category 1: Node o receives a message (Mah) that a provided service to b. Note that this message is 

originated by a and contains the satisfaction certificate given to it by b. We use the following notation 

to describe this event, o : a -» b. Based on this information, node o takes an appropriate action as 

outlined in Figure 5.6. 

1) if (b € Bad0) V (oTGrp ^ aTGrp = bTGrp) //nodes a and b are peers, but node o 
belongs to a different TGrp 
2)then 
3) return; 
4) if (oTGrp = aTGrp — bTGrp) 
5)then 
6) C0a 1 + Coa + C0i, 
7) C0b C0b — Cs 
8) return; 
9) if (oTGrp = aTGrp bTGrp) 
10) then 
11) Coa <— 1 + Coa + C0 b T G r p/\bTGrp\ 
12) CobTGrp <- CobTGrp ~ Cs 
13) send Mab to i, V î G r o  

14) return; 
15) if (oTGrp = bTGrp / aTGrp) 
16) then 
17) CoaTGrp 4 1 CoaTGrp 4" Cob 
18) Cob C0b — Cs 
19) return; 
20) if (oTGrp / bTGrp / aTGrp) 
21) then 
22) CoaTGrp 1 + CoaTGrp + C0 b T G r p/\bTGrp\ 
23) CobTGrp 4— CobTGrp — Cs 
24) return; 

Figure 5.6 Reputation counter update upon receiving a satisfaction certificate 

Category 2: Node o receives a message (Mab) that a cheated b. Note that this message is originated 

and signed by b. We use the following notation to describe this event, o : a -/» b. Based on this 

2In the reputation counter update mechanism presented in Figures 5.6 and 5.7, if a counter value on the right-hand side of 
an assignment statement is negative, it is set to zero. 
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information, node o takes an appropriate action as outlined in Figure 5.7. 

1) if (b € Bad0) 
2)then 
3) return; 
4) if (oTGrp = aTGrp = bTGrp) A (o ^ b) A (o / a) 
5)then 
6) Coa <— Coa — Cot * /? 
7) C0& •<— C0j, — Coa * P 
8) return; 
9) if (oTGrp = aTGrp = bTGrp) A (o = b) 
10) then 
1 1 )  G 0 a  C o a  —  C 0 b  *  a  

12) return; 
13)if (oTGrp = aTGrp = bTGrp) A (o = a) 
14) then 
15) C0i, f- C0ft — Coa * a 

16) return; 
17)if (oTGrp = aTGrp ^ bTGrp) 
18)then 
19) Coa 4— Coa — {C0 b T G r p/\bTGrp\) * 7 
20) CobTGrp ^ C0bTGrp ' C00 

21) return; 
22)if (oTGrp = bTGrp aTGrp) 
23)then 
24) C06 Coi, - (Co a T G r p/\aTGrp\) * 7 
25) CoaTGrp ^ CoaTGrp C0b 
26) return; 
27)if (oTGrp / aTGrp / bTGrp) 
28)then 
29) CobTGrp C0bTGrp ~ Co a T G r pI\aTGrp\ 
30) CoaTGrp CoaTGrp - CgbTGrp/\bTGrp\ 
31) send Mab to i, Vi € ro 

32) return; 
33)if (oTGrp / aTGrp = bTGrp) 
34)then 
35) return; /* do nothing - both a and b belong to the same TGrp. 
Not much can be derived from this information */ 

Figure 5.7 Reputation counter update upon receiving a complaint 

Figure 5.6 is self-explanatory, so we focus on Figure 5.7. a, (3, 7  (where 0 < 7 < / 3 < a < l )  

limit the reduction in reputation counter values for one's TGrp members. Peers are given benefit of 

doubt even if bad service is received from them. This is because nodes trust their TGrp members to 

be good and attribute their malicious behavior to some external factor, as described in Section 5.4.3. 
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For example, in Steps 11 and 15, o minimizes the reduction in reputation counter of its peer node by 

a factor, a (which is less than 1). Likewise, if a member node receives a complaint involving two of 

its peers, the reputation counters for both are reduced, but scaled down by a factor, j3, as shown in 

Steps 6 and 7. The value of /? is typically less than a because it is not known for certain which of the 

two nodes is really a malicious node. Thus, a low value of f3 minimizes wrongfully penalizing a good 

peer node. Moreover, there is a possibility that none of the two nodes are malicious and poor service 

occurred because of some external factor. The value 7 in Steps 19 and 24 represents the fact that nodes 

trust their peers more than they trust someone outside their TGrp. Thus, a low value of 7 makes it 

difficult for bad nodes to cause a good node to be evicted from a TGrp by propagating false negative 

information against it. 

In summary, the reputation management framework, as presented above, satisfy the following prop­

erties that contribute to its robustness and use for emulating a system of virtual currency. 

Property 1 - A node that provide bad service cannot have positive reputation (from Equation 5.5). 

Property 2 - Information about bad nodes is readily available (from Section 5.3.1). 

Property 3 - A node needs to have positive reputation (i.e., provide good service) to join a TGrp 

(from join request decision rule in Section 5.4.2). 

Property 4 - A TGrp member is not evicted from the TGrp as long as it does not provide bad service 

(assuming Cs to be zero) (from TGrp eviction rule in Section 5.4.3). 

Property 5 - TGrp members are considered more trustworthy than non-TGrp members (from steps 

17-20 in Figure 5.7). 

Property 6 - Sending false complaints can cause nodes to incur loss in their reputation (from Equa­

tion 5.5). 

Property 7 - Nodes that are identified as bad are not selected for service transactions by good nodes 

(from Section 5.3). 

Property 8 - Service providers use clients' reputation for prioritizing their requests (from Equations 

5.1 and 5.3). 
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5.6 Framework Evaluation 

We have evaluated our proposed reputation management framework using extensive experiments 

and found that it satisfies the requirements for using reputation as a form of currency, and is robust 

against possible attacks by malicious nodes. We describe the simulation setup used for our experimen­

tation below. 

5.6.1 Simulation Setup 

The network contains a specified number of good and bad nodes. Good nodes are differentiated 

based on their service probabilities, and never provide bad service when selected for a transaction. The 

goal of bad nodes is to maximize the instances of bad service in the network, i.e., their intent is to get 

selected for a transaction and then provide bad service. Moreover, they may fake high reputation to 

increase their priority and prevent legitimate requests from being serviced. Bad nodes may propagate 

false negative information against a target node to reduce its reputation and cause it to be evicted from 

its TGrp. Evicted nodes are considered as bad and are given a very low reputation value (say -1) by 

the peers and others that learn about the node being evicted. We refer to such attacks as the denial-of-

reputation (DoR) attacks, and the only way a good node's reputation can appreciably be decreased is 

by causing it to be evicted from its TGrp. 

5.6.1.1 Network Topology and Service Lookups 

Nodes have fixed number of network neighbors equal to log N connected in an overlay topology, 

where N is the network size.3 All good nodes belong to one of the specified service categories, i.e., they 

originate and serve requests only related to that service category. The total number of service categories 

is dependent on the network size and in all simulations it is set to N/15. We also ran simulations with 

the number of service categories equal to N/10 and obtained similar results as presented here. Good 

nodes configure themselves into various TGrps and no two member nodes in a TGrp belong to the same 

service category. Bad nodes can also join TGrps in order to subsequently provide bad service and/or 

target good nodes. 

3This is typically the neighborhood size in several proposed P2P architecture, such as Chord [3] and CAN [4], 
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Network size 300 

a 0.3 

P 0.3 

7 0.1 

C 0.1 

CS 0 
Simulation rounds 100 

Table 5.1 Default values of the parameters used in simulations. 

To keep our framework general and independent of any specific routing protocol, we assume that 

all nodes belonging to a requested service category are equally likely to be selected by a client. The 

probability of selection is governed by the service probabilities of the candidate nodes. Moreover, bad 

nodes can intercept requests and claim to provide service, even if they are not capable of doing so. The 

probability of interception is directly proportional to the number of bad nodes. 

5.6.1.2 Additional Simulation Assumptions 

In our simulations, we do not penalize nodes for accessing services, i.e., Cs in Equation 5.4 is set 

to zero and a node's reputation is unaffected if it accesses service. This is based on the assumption that 

serving a request is much more expensive than receiving a request and an overloaded node can simply 

ignore a request if it is unable to serve it. 

Unless otherwise stated, Table I gives the value of various parameters used in our simulations. We 

divide the total simulation time into multiple simulation rounds. In every round, each node initiates a 

single request that can be satisfied by any of the potential service providers. The limit of one request 

per node per simulation round simplifies the handling of scenarios where bad nodes repeatedly send out 

messages to enhance each others' reputation. Intuitively, if one receives multiple service transaction 

information initiated by the same node in a short span of time, then this information is discarded. 

The time interval for reputation update, as defined in Section 5.5.1, is equal to one simulation 

round. This was adopted so as to simplify the simulation code and any other timer value could also be 

used without altering the qualitative nature of the results. 
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5.6.2 Effect of TGrp Formation Rules 

Change in group size with time (network size = 
300, number of neighbors = 20) 

20 i 

QMin 
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Round number 

Change in group size with time (network size = 300, 
number of neighbors = 30) 
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Change in group size with time (network size = 
450, number of neighbors = 20) 

Round number 

Change in group size with time (network size = 450, 
number of neighbors = 30) 
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Figure 5.8 Figure depicting the evolution of TGrps in networks of size 300 and 
450. For each network size simulation results are given when the num­
ber of neighbors of a node were 20 and 30 each. Min, Max, and Avg 
refer to the minimum, maximum, and average size of the TGrps in the 
network at the end of each simulation round. 

We carried out simulations to study the effect of TGrp formation rules given in Section 5.4.2 to 

see if an uninitialized system converges to a stable state, such that the number of TGrps (and their 

respective size) in a system do not change. (During our simulations we allowed TGrps to merge 

provided there were no service category conflicts among the joining nodes). Figure 5.8 indicate that an 

uninitialized system reaches the stable state in only a few simulation rounds (in round number 4 and 

5 for network size of 300 and 450, respectively). A simple argument to support this fast convergence 
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is that a TGrp cannot have members with the same service category, and thus the number of different 

service categories limit a TGrp size. 

The problem of TGrp formation is akin to formation of communities in human societies. Re­

searchers in social sciences and related areas have proposed models to predict this phenomenon [81, 

82]. We believe that these models for community formation complement our work and can potentially 

benefit from the proposed framework. For the remainder of the chapter we assume the TGrps to be 

given with all good nodes belonging to one of them. Initially, the bad nodes are not part of any TGrp, 

however, they can join one if they provide sufficiently good service over a period of time. This scenario 

is valid in real-world also, as malicious nodes usually do not join a network in the early stages of its 

formation. Usually it is much easier for malicious nodes to operate when the network has reached a 

certain critical size. 

5.6.3 Effect of Service Probability 

TGrps with higher service probabilities have higher 
reputation 

c 
o 

• 

o 
Z 0 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Service probabilities 

Figure 5.9 Simulation results showing the normalized reputation (scaled to a 
value between 0 and 1) of various TGrps at the end of round number 
50. The network consisted of 10 TGrps, each containing 15 member 
nodes. Nodes in a TGrp serve with equal probability. The service 
probabilities of nodes in different TGrps are different and are assigned 
one of the values as shown in the figure. 
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Simulation results show that reputation of (and extent of awareness about) TGrps is dependent on 

the service probabilities of their respective member nodes. This can be seen from the results shown 

in Figure 5.9. Moreover, with time all bad nodes are detected and isolated (not selected for service 

transaction), thus limiting the amount of bad service they can provide to good nodes, as demonstrated 

by the following set of attack models. 

5.6.4 Attack Models 

To take into account different possible strategies of the bad nodes, we examine five different attack 

models in this section. These attack models reflect the main requirements outlined in Section 5.1 for 

using reputation as a substitute for currency, and also indicate the robustness of the proposed framework 

in dealing with nodes' selfishness and maliciousness. 

Saturation of total amount of malicious service in 
the network with time 
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Figure 5.10 Even when there are large number of malicious nodes in the system, 
the percentage of bad service in the network continuously decrease 
as the number of requests increase. Bad nodes are identified and not 
selected for future service transactions. The simulation results are for 
a network with 300 good nodes, with increasingly higher number of 
bad nodes. For example, (300, 50) denotes the network configuration 
with 300 good nodes and 50 bad nodes. 
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Attack Model A (Always provide bad service). Malicious nodes always provide bad service 

when selected for a transaction. The probability of a bad node selection is directly proportional to 

the number of bad nodes in the system. This attack model is countered due to Property 1, Property 

2, and Property 7. In this case, the reputation ratings of bad nodes remain zero or negative, and thus 

they are not able to join any TGrp. Since negative information is readily propagated, all bad nodes are 

rapidly identified and put in Bad; set of all the good nodes. Since the nodes in Badi are not selected for 

service transaction, the affect of bad nodes on good nodes is minimized and the network soon continues 

to operate as if there are no malicious nodes. 

As shown in Figure 5.10, the number of bad service instances saturate to some maximum value 

after only a few simulation rounds. As expected, the time to reach this maximum value is proportional 

to the fraction of bad nodes in the system. 

bad-service : instances of bad service provided by a bad node 

good-service : instances of good service provided by a bad node 

Network size Zeta^» 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

150 
bad—service 14 8 5 5 3 3 3 3 2 2 

150 
good-service 2 2 2 2 2 2 2 2 2 2 

300 
bad-service 10 5 3 2 4 4 4 3 3 1 

300 
good-service 4 4 4 4 5 5 5 5 5 4 

450 
bad-service 22 10 6 4 4 3 3 3 3 1 

450 
good-service 4 4 4 4 4 4 4 4 4 3 

Figure 5.11 With increasing the amount of good service provided by a mali­
cious node to join a TGrp exceeds the amount of bad service it can 
provide before it is evicted from a TGrp. Network size refers to the 
total number of nodes in the system. 

Attack Model B (Provide good service until one joins a TGrp). Malicious nodes first provide 

good service (with service probability equal to unity) and upon joining a TGrp, they always provide 

bad service. The intent of bad nodes here is to utilize the fact that the reputation of a node is dependent 

on the reputation of its TGrp. By joining reputable TGrps, malicious nodes attempt to maximize the 
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instances of bad service in the network. This is because bad nodes are not put in Badi, as long as good 

service by their peers offset their bad service. As a result, bad nodes despite their poor service record 

continue to get selected for service transactions. 

This attack model is countered due to Property 3, and Property 4. As described in Section 5.4.3, 

the reputation of a member node that provide bad service is gradually reduced and is eventually evicted 

when its reputation goes below zero as viewed by the majority of its peers. Moreover, re-entry of an 

evicted node into the same or any other TGrp requires higher level of service than what was required 

of it previously. Therefore, we only consider the damage that a bad node can cause by joining a TGrp 

for the first time. 

We ran simulations to see the total number of bad service instances that a malicious node can 

provide upon entering a TGrp and before it is evicted. As shown in Figure 5.11, the amount of bad 

service that a malicious node can provide, before it is evicted, is greatly influenced by the value of 

(. For small values of (, the number of bad service instances far exceed the number of good service 

instances. But as ( is increased, the reverse is true and this attack model becomes less and less attractive 

for the bad nodes. Bad nodes need to provide good service to be able to join a TGrp. These results 

are as expected, since higher £ means that greater importance is given to current as compared to past 

performance. Therefore, malicious nodes cannot rely on past reputation to continue providing bad 

service and still be part of a TGrp. 

We believe that it is difficult to completely avoid the damage caused by this attack model. This is 

due to the premise on which the notion of TGrps is based. TGrp members trust each other to be good 

and give each other benefit of doubt even if they provide bad service. However, in all our simulation 

runs, bad nodes are eventually identified and evicted. 

Attack Model C (Spread false negative information regarding good nodes). Malicious nodes 

launch DoR attacks to reduce the target nodes' reputation and cause them to be evicted from their 

TGrps. This attack model is countered due to Property 5, and Property 6. It requires several bad nodes 

to provide sufficient good service to cause a target good node to be evicted. This partly defeats the goal 

of malicious nodes to maximize the instances of bad service in the network. We ran simulations with 

network size equal to 150, 300, and 450 and in each configuration successively varied the number of 
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bad nodes. All the bad nodes target a randomly chosen good node and spread false negative informa­

tion against it in each round. Also, in order to earn high reputation, bad nodes provide good service 

whenever they are selected for a service transaction. 

round # : Simulation round number in which the target node is evicted 

good-service : instances of good service provided by bad nodes (till the target node is evicted) 

in order to earn high reputation 

Network size jBad| —» 
1 

5 10 15 20 25 30 35 40 45 50 Network size jBad| —» 
1 

150 
round # - - - 34 27 25 23 22 22 22 

150 
good-service 240 276 313 330 374 470 490 

300 
round# - - - - 32 31 29 27 25 24 

300 
good-service _ _ - 263 298 314 322 377 384 

450 
round # - - - - 38 37 29 28 28 27 

450 
good-service - - _ 298 323 361 375 403 459 

Figure 5.12 With the increase in the number of bad nodes, the target node is 
evicted in an earlier round. At the same time, however, the total in­
stances of good service provided by bad nodes also increase. Entries 
left blank indicate that bad nodes were unable to evict the target node, 
i.e., the DoR attack failed. Network size refers to the total number of 
nodes {\Good\ + \Bad\) in the system. 

As shown in Figure 5.12, in all the simulation runs, at least 20-30 bad nodes are required to cause 

a target node to be evicted. This is expected because peers of the target node scale down the reputation 

counter values of the complaining nodes by a factor, 7 (=0.1). Thus, large number of complaints are 

needed before the reputation of the target node goes below zero as viewed by its peers. With higher 

number of bad nodes the target node is quickly evicted, i.e., in an earlier round, but the total instances 

of good service provided by the bad nodes is also increased. 

Attack Model D (Piggyback on a TGrp's reputation to increase the reputation of other bad 

nodes). Bad nodes split themselves into two groups - Badl and Bad,2. Nodes in Badl always pro­

vide good service and nodes in Bad2 always provide bad service. Badl nodes assist Bad2 nodes to 

increase their reputation. This attack model attempts to maximize the number of bad service instances 

by increasing the probability that Bad2 nodes are selected for service transactions. Badl nodes ini­
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tially provide good service in order to be accepted into some TGrp. After joining a TGrp, they do not 

serve good nodes and only propagate positive information about Bad2 nodes. Since Badl nodes never 

provide bad service and because C$ is set to zero in our simulations, Badl nodes never get evicted 

from their TGrp(s). Bad2 nodes on the other hand use the increased reputation to get selected for 

service transactions and provide bad service. 

Comparison of effectiveness of atack model D with 
respect to attack model A 
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Figure 5.13 Comparison of Attack Models A and D when the number of good 
nodes are 300 (i.e., \Good\ = 300) and the number of Bad2 nodes 
are 100 (\Bad2\ = 100). The number of Badl nodes vary from 0 
to 100 in Attack Model D, whereas they remain equal to 0 in Attack 
Model A. 

This attack model is countered due to Property 1, Property 2, Property 3, and Property 7. To 

evaluate its effectiveness, we compare it with Attack Model A to see if Badl and Bad2 nodes together 

are able to increase the instances of bad services beyond what is possible in Attack Model A. For 

this we define a metric, net maliciousness, which is the difference between the number of bad service 

instances provided by Bad2 nodes and good service instances provided by Badl nodes. 

It is clear from the results in Figure 5.13 that the value of net maliciousness in Attack Model D 

is less than that in Attack Model A, even when there are significantly large number of Badl nodes. 

For experimentation, in Attack Model A, we always have the number of Badl nodes to be zero, while 

in Attack Model D, we successively increase the number of Badl nodes to see how it increases the 

probability of Bad2 nodes getting selected for service transactions. When the number of Badl nodes 
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increase relative to the number of good nodes, Badl nodes do not have to provide as much good service 

to get accepted into some TGrp. This explains higher net maliciousness achieved by Attack Model D 

as compared to Attack Model A when \Badl\ > 90. Similar results were obtained for other network 

sizes as well, and it appears that this attack strategy is not any stronger than the one adopted in Attack 

Model A. 

|Bad| 10 30 50 70 90 110 130 150 

round# 43 46 45 47 47 51 53 53 

Figure 5.14 Illustration of the number of rounds in which the bad nodes are iden­
tified as bad by the good nodes. The number of good nodes are 300 
and the number of bad nodes vary from 10 to 150. In every sim­
ulation round each bad node sends a satisfaction certificate with an­
other randomly selected bad node as the service provider. The service 
probabilities of the bad nodes are set to unity so as to simulate their 
increased reputation, and hence higher probability of getting selected 
by good nodes for service transactions. 

Attack Model E (Spread false positive information regarding other bad nodes). Malicious 

nodes send out false satisfaction certificates, indicating other malicious nodes as the service provider, 

in order to increase each other's reputation. In addition, they provide bad service when selected by 

good nodes for service transactions. Malicious nodes can use the increased fake reputation to increase 

their priority and prevent other legitimate requests from being serviced. However, this attack strategy 

is naturally countered due to Property 5 and Property 7. An increase in the reputation of malicious 

nodes attract service requests from the good nodes. But since malicious nodes provide bad service to 

good nodes their reputation goes down. This decrease in reputation can be substantial depending on 

the value of parameter 7. In fact, the simulation results confirm this hypothesis, as it is found that all 

the malicious nodes are identified as bad by the good nodes (see Figure 5.14). Interestingly, number of 

malicious nodes had little impact on the effectiveness of this attack model. This is primarily due to the 

limit imposed on the number of requests that a node can originate in any given round. 
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5.6.5 Minimizing Free-Riding 

The framework reduces the problem of free-riding because service providers serve clients based on 

their reputation, and the only way to increase reputation is by serving others. It is possible for nodes 

to enter a TGrp and piggyback on the reputation of their peers, however, to join a TGrp one has to 

first provide good service to sufficient number of nodes in order to earn high reputation. Even after 

entering a TGrp, free-riders cannot continue to access services without sharing their own resources in 

return. Peers decrement the reputation counter of a node accessing service by the network cost, Cs-

With time, the reputation of a node that only receive services goes below zero and is evicted from the 

TGrp. 

Moreover, service providers serve a client only if the client is not in their Badi set. This is because, 

even if there is no contention for service (as given in the example in Section 5.1), a service provider's 

reputation is not increased if it serves a malicious node. Thus, it is difficult for malicious nodes with 

low reputation to receive any service. 

5.6.6 Aligning Virtual Currencies With Fine-Grained Monetary Transactions 

The reputation management framework presented so far allows reputation to be used as a measure 

of nodes' wealth, and to ensure that nodes with higher wealth get priority (say, in terms of quality of 

service received) over others with less wealth. The framework can also be easily extended to more 

closely mimic the actual monetary transactions taking place among nodes. For example, say node a 

serves node b in return for # amount of currency. This information can be encoded in the satisfaction 

certificate propagated by node a, and accordingly Equations 5.3 and 5.4 would be modified to include 

the amount value of #. The modified equations are given as follows. 

CoaTGrp = 1 + CoaxGrp "t~ <?(^) * ̂ ob'VGrp/1bTCirp| (5.13) 

CobTGrp = C0bTGrp ~ d{®) * Cs (5.14) 

In the above equations, g ( )  is a function that suitably scales up (or down) the monetary amount 

values to be useful for reputation calculation. One must take care in selecting the function g() to ensure 
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that the increase in reputation (or currency) of the service provider is never less than the decrease in 

reputation (or currency) of the service receiver. This is because otherwise the total curency in the 

system would gradually reduce, and eventually become negative. 

We believe that the qualitative nature of the results given previously reagrding the effectiveness and 

robustness of the proposed framework would not change due to the above changes in the calculation of 

reputation counter values. As part of our future work we would investigate more formally the financial 

stability (and the accompanying inflation/deflation) of the system using our proposed virtual curency 

implementation. 

5.7 Summary 

In this chapter, we proposed and evaluated a novel reputation management framework for large 

Internet-scale P2P systems. We demonstrated the mechanisms for and feasibility of using reputation 

as a substitute for actual currency, and described how reputation computation can be carried out when 

nodes behave selfishly (and even maliciously). The framework implements a system of virtual cur­

rency such that nodes with higher reputation stand better chances for obtaining services than their less 

reputable counterparts. We considered various strategic attack models that can be used by malicious 

nodes, and showed that our proposed framework gracefully withstand all such attacks. The framework 

also minimizes the problem of free-riding. 

Our most important contribution is to utilize the concept of TGrps for reputation management. 

We find that even simple reputation update rules, based on the notion of TGrps, are effective when 

there are large number of malicious nodes working in collusion to bring down the system. The various 

advantages of TGrps are summarized below. 

• Members of a TGrp cooperate to minimize the damage that malicious nodes can cause to their 

reputation. This is because a node's reputation is derived from its TGrp's reputation, which in 

turn is dependent on the aggregate service provided by all the member nodes. Thus, even if 

malicious nodes target a good node by sending false complaints against it, the reputation of the 

target node is not severely affected. 
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• TGrp members assist in positive information propagation, i.e., when a member node provides 

good service, its peers help to propagate that information to as many other nodes as possible. This 

is because doing so increases the reputation of the entire TGrp, and thus of all the constituting 

member nodes. 

• TGrps provide scalability to the reputation management system because nodes are judged based 

on their TGrps. Therefore, one needs to keep reputation information about TGrps only, which 

are much less in number than the total number of nodes in a network. 

• Recommendations from peers are more reliable. This is because peers have different areas of 

interest (and thus minimum conflict of interest), and so have little incentive to provide misleading 

recommendations. 

• TGrps provide an effective solution for dealing with large group(s) of colluding malicious nodes 

and providing protection against possible attacks by malicious nodes. This satisfies one of the 

requirements outlined in Section 5.1 for implementing a system of virtual currency - protecting 

one's wealth against malicious nodes in the system. 

Our framework is extensible and flexible enough to be tuned as per the requirements of a spe­

cific system. The proposed framework is scalable to large-scale P2P systems, and enables reputation 

computation in the face of nodes' selfishness, which can cause wrong or no service information to be 

propagated. 
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CHAPTER 6. GAME THEORY AS A TOOL TO STRATEGIZE AS WELL AS 

PREDICT NODES' BEHAVIOR IN PEER-TO-PEER NETWORKS 

6.1 Overview 

Free-riding is widely acknowledged to be plaguing the current growth and widespread deployment 

of P2P systems. In [21] it is mentioned that almost 70 percent of the nodes in a Gnutella system never 

share their resources. Several mechanisms have been proposed to address this problem of free-riding 

- (1) monetary payments (service providers get suitably compensated by service receivers), and (2) 

reputation schemes (nodes with higher reputation get better service from others). The monetary pay­

ment scheme involves a fictitious currency, and requires an accounting infrastructure to track various 

resource transactions, and charges for them using micropayments. While the monetary scheme pro­

vides a clean economic model, it is difficult to implement such schemes in practice. The reputation 

based incentive model seems more promising. 

In this chapter, we study the behavior of nodes in peer-to-peer networks when reputation is used 

as a mechanism to incentivize nodes to share resources and provide services. The probability of a 

node obtaining service is directly proportional to its current reputation, and the only way to enhance 

reputation is by serving others. This minimizes the problem of free-riding without relying on any 

centralized entity and/or coordination among peers. Coordination among peers is not required since 

peers decide their optimal strategies independently. The strategies used are symmetric, i.e., the same 

strategy is used by all the nodes (as opposed to protocols, which require different nodes to behave 

differently - this is difficult as all nodes in a P2P system assume the same role, thereby complicating 

different strategy assignment to different nodes). 

Currently, P2P systems are used primarily for file sharing such as audio, video, etc. However, it is 

widely acknowledged that other resources, such as compute power, bandwidth, storage, etc., can also 



www.manaraa.com

115 

be potentially shared using the P2P paradigm. Moreover, it is predicted that in future large ad-hoc grids 

would be organized in a P2P configuration to execute large-scale complex applications [37]. In such 

systems, stakes for individual peers would be higher as the cost of providing (and receiving) services 

would be very high (as opposed to almost zero cost associated with an audio file sharing, for example). 

It is thus reasonable to assume that all peers would behave selfishly in order to maximize the utility 

that they derive from the system. 

Game theory [52] is an ideal tool to model a system with selfish nodes. We model the interac­

tion among peers in a P2P system as an infinitely repeated game, and compute the Nash equilibrium 

strategies (i.e., the participation level) of nodes in such a game. Peers use game theory principles to 

determine when they should or should not serve others. We treat each peer as a rational, strategic 

player, who wants to maximize its utility by participating in the P2P system. Peers gain utility by 

obtaining services (resources) and loose utility (i.e., incur cost) while serving others. Since probability 

of obtaining service is dependent on one's reputation (which is gained only by serving others), peers 

strategize their actions such that their overall utility is maximized, i.e., they serve at a minimum level 

that maximizes their probability of obtaining service in future. Moreover, a system designer can use 

the game theoretic notion of Nash Equilibrium to analyze the strategic choices made by different peers, 

and study the overall efficiency of the system (including how it can improved). 

When nodes also derive utility out of altruism, the probability of providing service would be higher 

than that given by the model presented in this chapter. Therefore, in some sense the model presented 

here provides a lower bound on the participation level for nodes below which they should not provide 

service. 

6.2 Service Game 

We assume the network lifetime to be infinitely long and divide the total time into individual time 

periods, represented by t for t = 0,1,... oo. In every time period each node gets a request for service. 

The other activity of each node during a time period is to obtain service for itself. Every service request 

maps to one or more service providers, which can be requested in parallel or sequentially. A request is 

assumed to be fulfilled when any of the requested service provider agrees to serve. For simplicity, we 
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assume that a node always request exactly one service and is also requested exactly once for service 

in every time period. We assume a node's utility to be zero if it receives service more than once in a 

time period. Moreover, in an actual implementation, a node might receive multiple requests, however, 

some of those requests might be from low reputation clients and thus might be ignored. So the action 

{Serve} (as described below) corresponds to a situation when any one of the received request during a 

time period is served. 

We model the interaction among peers as an infinitely repeated game. A game is played during 

each time period. In a game, denoted by G, nodes request service for themselves, and decide whether 

to serve others or not. Precisely, the game G is defined as follows. 

Players: All the peers. 

Actions: Each player's set of actions is {Serve, Don't serve}.1 

Preferences: Each player's preferences are represented by the expected value of a payoff function 

that assigns value U when service is received and cost C when service is provided. 

The service game, which is an infinitely repeated version of game G (i.e., when G is played over 

and over again in successive time periods) is represented by G°°. 

As stated earlier, the probability with which a player receives service is dependent on its current 

reputation. Reputation of player i in some time period t is denoted by R\. Reputation of a node depends 

on its performance in the current time period as well as in prior time periods. Formally, we define R\ 

as follows. 

= R\_ i ( l  -a)+u*a, 0 < a < 1 t>2 (6.1) 

In the above equation, w is 1 when service is provided by player i in time period t, and is 0 other­

wise. Therefore, we have 0 < R\ < 1, i.e., the reputation of a player in every time period is always a 

value between 0 and 1 (including). Moreover, at t = 0 the reputation of all players is 0 and at t — 1 the 

reputation is given simply by ui. The parameter a is a constant and captures the importance assigned to 

'The action corresponding to obtaining a service in a time period is not explicitly included in the model, as it is always 
assumed to take place. 
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the current performance of a player as opposed to its past performance for estimating its reputation. A 

high value of a means that more importance is assigned to a player's service in the current time period 

than its previous service record, and vice versa. Thus, when a is high, a node with even low reputation 

value can significantly improve its reputation by providing service in the current time period. 

We assume that service information is readily propagated in the network and is available to all 

the players, i.e., each player when it serves another player propagates that information to as many 

other players as possible. The received service information is then recursively forwarded to other 

players. Therefore, it can be assumed that service information is propagated using a mechanism such 

as flooding, and is available to all the players. 

6.3 Nash Equilibrium of the Service Game (G°°) 

Now we evaluate the possible Nash equilibria of the service game By Nash Folk Theorem 

[52], if a* is a Nash equilibrium action profile for some game G' then it is also the Nash equilibrium 

action profile when G' is played repeatedly infinite number of times.2 

Therefore, finding the Nash equilibria of G°° reduces to finding the Nash equilibria of game G. We 

evaluate both pure- and mixed-strategy Nash equilibrium of G. Since the proposed incentive mecha­

nism based on a player's reputation links the benefit that a player draws from the system to its con­

tribution - the benefit is a monotonically increasing function of a player's contribution. Thus, this 

is a non-cooperative game among the players, where each player wants to maximize its utility. The 

classical concept of Nash equilibrium points a way out of the endless cycle of speculation and counter-

speculation as to what strategies the players should use, and is defined formally below (from [52]). 

A Nash equilibrium is an action profile a* with the property that no player i can do better by 

choosing an action different from a*, given that every other player j adheres to a*. 

An equilibrium point is a locally optimum set of strategies (service probabilities, i.e., how much to 

serve others), where no player can improve its utility by deviating from the strategy. 

2The notation a* denotes the Nash equilibrium action profile of all the players, such that the Nash equilibrium action of 
player i in this equilibrium is given by ot

r. 
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6.3.1 Pure Strategy Equilibrium 

The action profile where all the players select the action {Don't serve} is a Nash equilibrium. This 

is because if any player i decides to serve, by selecting the action {Serve} instead, its payoff is —C, 

which is less than a payoff of 0 that it gets when it provides no service. The payoff of player i is — C 

when it decides to serve because all the other players choose the action {Don't serve}, and therefore 

player i is unable to utilize its increased reputation to obtain service from others (and derive utility U 

in return).3 

However, the action profile wherein all players choose the action {Don't serve} is an undesirable 

Nash equilibrium, since it means that no service is provided in the network. As a result the whole P2P 

system breaks down, and therefore, this equilibrium is an undesirable one. In light of this we argue 

that this action profile is an unlikely equilibrium and is not likely to be reached (especially when there 

is also altruism among network nodes to some extent). 

The action profile where all the players select the action {Serve} is not a Nash equilibrium. This 

is easy to see because if everyone else is serving requests than the best strategy for any player is to 

deviate by switching its strategy to {Don't serve}. By doing so the player gets a payoff of U instead of 

U — C when it also serves. 

Thus, we conclude that the only pure strategy Nash equilibrium of G is when players select the 

action {Don't serve} (such that action {Don't serve} is selected in each time period in G°°), which, 

however, does not appear to be a likely convergence state for any useful P2P system. 

6.3.2 Mixed Strategy Equilibrium 

We now consider the possibility of a mixed strategy Nash equilibrium of G, wherein players instead 

of deterministically selecting their actions randomize among their available set of actions. In other 

words, players select the action {Serve} in some time periods and the action {Don't serve} in others 

in G°°. 

We want to find a symmetric Nash equilibrium because all the players belong to the same popula­

tion (i.e., assume the same role) and it is therefore easier (i.e., require no coordination among players) 

'Similar result involving non-cooperation among players is predicted by the classical Prisonner's Dilemma game. 
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to achieve such an equilibrium. (A symmetric Nash equilibrium is an action profile a*, which is a Nash 

equilibrium and a* = a* for any two players i and j. Stated simply, in a symmetric Nash equilibrium all 

the players take the same action (deterministically or probabilistically)). If the players in a game either 

do not differ significantly or are not aware of any differences among themsleves, i.e., if they are drawn 

from a single homogeneous population, then it is difficult for them to coordinate, and a symmetric 

equilibrium, in which every player uses the same strategy, is more compelling. The argument of a sin­

gle homogeneous population implies that all the peers in a P2P system have equivalent responsibilities 

and capabilities as everybody else. 

Let there be such a mixed strategy Nash equilibrium in G, such that a player selects the action 

{Serve} with probability p and the action {Don't serve} with probability 1-p. Here p is a non-zero 

value, i.e., both the actions are assigned positive probability by the mixed strategy of the player. Since 

the discussion here applies to all the players, therefore, for convenience we omit reference to a partic­

ular player and drop superscript i when defining reputation as given in Equation 6.1. 

The expected payoff to a player in time period t when it selects the action {Serve} is p(—C + 

ftserve * jjy This payoff value we denote by Payoff serve. Likewise, the expected payoff to a player 

in time period t when it selects the action {Don't serve} is (1 — p) * (Rfon't * U). This payoff value 

we denote by Pay of fdon't- A player's payoff when it provides service in a certain time period is 

—C + Rserve * U, which is the cost of providing service plus the utility it derives upon obtaining 

service. The term R^erve * U captures the notion that the probability of obtaining service is directly 

proportional to one's reputation. Therefore, a player's expected payoff in a mixed strategy that selects 

the action {Serve} with probability p is given by p(—C + Rs
t
erve * U). Likewise, one can obtain a 

player's expected payoff in a mixed strategy that selects action {Don't serve} with probability 1-p. 

Here we have made an assumption that players first have an opportunity to serve others (and hence 

increase their reputation) before requesting service for themselves. 

ftserve js a player's reputation when it provides service in time period t and R.f"1'1 is a player's 

reputation when it does not provide service in time period t. From Equation 6.1, we obtain 

and 
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- a )  

An important characterization of mixed-strategy Nash equilibrium of finite games (one where ac­

tion set of players is finite) is the following (from [52]). 

Each player's expected payoff in an equilibrium is its expected payoff to any of its actions that it 

uses with positive probability. 

The above useful characterization of a mixed-strategy Nash equilibrium yields, 

Po*yof fserve = fdon't 

=> p(-C + - a) + a) * [/) = (1 -p) * ((#*_!(1 - a)) * (7) (6.2) 

Solving Equation 6.2, we get 

= Rt~^(l ~ rfi 
P -C + 2Rt-iU(l-a) + Ua 1 ' ' 

It must be noted that the value p obtained above is not a constant, but varies in each time interval 

depending upon a node's reputation at the end of the previous time interval. The mixed-strategy (p, 1 — 

p) for actions {Serve, Don't serve}, respectively, is a mixed-strategy Nash equilibrium for the players. 

Assuming no collusion among nodes, if all the other nodes follow the above strategy, then the best 

strategy for any node is to also follow the above strategy (from the definition of Nash equilibrium). 

This is a symmetric mixed-strategy Nash equilibrium for G as well as G°°. We argue that it is a more 

stable equilibrium than the one in which no service is ever provided by the nodes. This is because of 

the following two reasons. First, when no service is provided the network is not useful to any user. 

Second, in practice users, which derive finite utility from altruism, would always provide some service 

irrespective of how much they obtain in return. Therefore, it is unlikely to have a scenario in which no 

cooperation among nodes take place. 
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6.4 Properties of the Nash Equilibrium 

In this section we study some interesting properties of the mixed-strategy Nash equilibrium derived 

above. 

6.4.1 Simplicity of Calculating the Equilibrium Strategy 

In the previous section we calculated the probability based on which nodes decide whether it is 

optimal for them to serve or not to serve. In each play of the game (or time period), players based on 

their reputation at the end of the prior time period decide whether they should provide service in the 

current time period or not. This probability as one can see does not remain constant from one period to 

another, and depends on a player's reputation at the end of the last time period. Players can calculate 

their reputation using Equation 6.1, since they know precisely their actions at each play of the game. 

Thus, determining the Nash equilibrium strategy is fairly straightforward for a player. It must be noted 

that there is an inherent assumption that peers get serviced based on their current reputation. The exact 

mechanism as to how that gets achieved (or is enforced) is outside the scope of the research here. 

Figure 6.1 gives an example of how a peer's reputation might change over time by following the 

equilibrium strategy proposed above. In the figure, an increase in the reputation value correspond to 

time intervals when service is provided by the peer, and vice versa. As can be seen, the equilibrium 

strategy of players provides that over time their behavior, in terms of providing service to others, is 

similar to each other (i.e., independent of the initial state or reputation value). 

6.4.2 Address the Problem of Free-Riding 

Since the mixed-strategy Nash equilibrium assigns positive probability to the action {Serve} (i.e., 

players serve others with a positive probability in each time period), the problem of free-riding is 

minimized in the network. The simple game theoretic model presented here, wherein reputation is 

used as a basis for providing service, predicts that it is in every peer's (including the free-riders') best 

interest to serve others. Our simulations support this behavior as we found that the total service received 

by a node is largely balanced by the total service that it has to offer to others, as shown in Figure 6.2. 
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Change in reputation of players as governed by their 
respective Nash equilibrium strategies 
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Figure 6.1 The figure shows the change in reputation values of players over time 
starting at time period t. The three players are assigned arbitrary rep­
utation values to begin with and the results are shown for a equal to 
0.5. Also, we set U/C = 100. 

alpha 

0.2 0.4 0.6 Oi 

0.2 14,14 4,4 2,3 2,2 

0.4 16, 17 3,4 1, 1 0, 1 

0.6 12, 12 4,5 2,2 1, 1 

0.8 17, 18 4,5 2,2 1, 1 

Figure 6.2 The figure shows the total instances of service provided and received 

by a node over a period of 20 time intervals (first and second of the 
pair of numbers in each box represent the total instances of service 
provided and received, respectively). Irrespective of the initial repu­
tation of a node and the value of a, the service received by a node 
is almost completely balanced by the service that it has to provide to 
others. Again, we set U/C = 100. 
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6.4.3 50 Percent Rule 

An important property of the equilibrium emerges from Equation 6.3 that predicts the probability 

with which one should serve others. If we set C « U (i.e., C can be ignored in Equation 6.3), 

then we have p < 0.5. In other words, if cost of providing service is negligible, Nash equilibrium of 

the service game predicts that players should serve each other less than 50 percent of the times when 

requested for service. This, although it appears to be very restrictive, is a consequence of the fact that 

all peers are selfish and are better off free-riding than serving others. Intuitively, if a peer knows that 

everyone else behaves selfishly, i.e., provide as little service as possible, then the best strategy for the 

peer cannot be to serve others most of the time (i.e., with probability greater than 0.5). 

In terms of Nash equilibrium, the above result can easily be understood by the following simple 

counter-example. If all players are known to service requests most of the time then any player can easily 

increase its payoff by switching to a strategy where it free-ride on others, i.e., serves with probability 

less than 0.5. Thus, an action profile where peers generously serve each other cannot constitute a Nash 

equilibrium. 

We believe that the above result is an important outcome of our game theoretic model of nodes' 

interaction in a P2P system, where all participants behave selfishly. Although, the above result is 

intuitively appealing, our model provides a proof based on game theory that explains such a behavior 

of peers. 

6.4.4 Fairness - Equal Sharing of Cost of System Inefficiency 

From our discussion in the previous subsection, where we concluded that serving with probability 

less than 0.5 is an optimal strategy (when C « U), one can see that the overall system efficiency is 

severely reduced. This is because at least half of the service requests in the system are not fulfilled. 

However, on the positive side, the equilibrium strategy provides fairness in the sense that the cost of 

system inefficiency is not borne by a single peer, but is shared (in inverse proportion to one's reputation) 

among all peers. This is because each peer's request is likely to be turned down by the serving peer. 

We assume that if a peer's request at one peer is turned down it re-tries at some other candidate peer 

capable of serving the request. On average, the probability that a peer's request is successfully served 
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in a time period is proportional to its current reputation. 

Increase in service probability of a player as alpha 
decreases 
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Figure 6.3 A decrease in value of a require players to serve each other with 
greater probability. An initial reputation value of 0.5 is used in all 
the cases for different values of a. Also, we set U/C = 100. 

6.4.5 Decreasing a for Higher Contribution 

As can be seen from Figure 6.3, a lower value of a shifts the service probability curve upwards. 

In other words, when a is low peers serve each other with higher probability. This is to be expected, 

since a determines how much importance is given to a peer's current performance as compared to its 

past service record. A low value of a (i.e., giving more importance to nodes past actions up to the 

current time period) means that peers need to continually provide service to be able to maintain high 

reputation and access service from the system. On the other hand, if a is high peers can easily increase 

their reputation in any period in which they provide service, irrespective of how cooperative they have 

been in past with regards to providing service to others. 

Thus, a simple way to improve the system efficiency is to set a as low as possible. As shown 

in Figure 6.3, as we decrease a the value of p tends to 0.5 (which is the maximum possible service 

probability in a system with selfish peers when C « U\ the same result can be obtained directly, if 

we set C = 0 and a = 0 in Equation 6.3). 
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6.5 Related Research 

Almost all the current research in P2P systems to overcome the free-riding problem relies on one of 

the following two incentive approaches - reputation [71, 72, 44, 45, 68, 69, 70] and monetary schemes 

[28,79]. Most of the reputation based schemes assume that there are only a small set of malicious peers 

that do not provide service. It is assumed that most of the nodes are good and they would monitor the 

contribution of others to ensure that free-riding does not take place. 

In a P2P system, a model where all the peers behave selfishly, however, appears to be more appro­

priate. This is true as P2P systems get used for more sophisticated application, such as distributed/grid 

computing, rather than simply sharing of music files, for example. In such scenarios, users have incen­

tive to behave selfishly as stakes are typically higher. Recently game theory has been used to model 

the behavior of nodes in P2P systems. Below we describe two such recent papers. The first paper uses 

reputation and the second paper uses money as a form of incentive to motivate peers to cooperate. 

6.5.1 [Chiranjeeb et. al.] 

In [83] the authors use game theory to study the interaction of strategic and rational peers, and pro­

pose a differential service based incentive scheme to improve the system's performance. The authors 

first consider a simplified setting of homogeneous peers, where all peers derive equal benefit from ev­

erybody else. In this case it is shown that there are exactly two Nash equilibria, and there are closed 

form analytic formulae for these equilibria. The stability properties of these equilibria are investigated 

and it is shown that in a repeated game setting, the equilibrium with the better system welfare is real­

ized. The authors use the symmetry of a homogeneous system to reduce the interaction of peers as a 

two-player game. This game is modeled as a Cournot-duopoly and the Nash equilibrium contribution 

of the players is calculated. The result is then extended to a //-player game. 

For a system with heterogeneous peers, it was concluded that no closed form solution is possible 

and so simulations are used to study such a setting. The main findings are that the qualitative properties 

of the Nash equilibrium are impervious to (1) exact form of the probability function used to implement 

differential service, (2) perturbations like users leaving and joining the system, (3) non-strategic or 

non-rational players, who do not play according to the rules. 
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We believe that a major drawback of the proposed differential service mechanism is the difficulty 

of its implementation. This is because of the following two reasons - (1) It is assumed that a peer 

wishing to join the system first determines the benefit that it can derive from the system. If the benefit 

is larger than a critical benefit, then the peer's best option is to join the system and operate at the Nash 

equilibrium value of contribution. If on the other hand the benefit is less than the critical value, the peer 

is better off not joining the system. The benefit for a peer is the amount of resources contributed by 

other peers as well as.the utility of those resources to the peer. Obtaining such information beforehand 

can be difficult and the issue is not adequately addressed in the paper. (2) Every request from a peer 

contains a metadata describing the contribution of the peer to the system. The differential service 

received by the peer is dependent on this information. Since peers have incentive to manipulate this 

information, the authors propose to use a neighbor audit scheme, in which peers continually monitor 

the contributions of their neighbors. We feel that such altruism on part of the peers is not reasonable to 

assume, especially when the underlying game model is uncooperative, and peers behave selfishly. 

6.5.2 [Philippe et. al.] 

The authors of [84] examine the design implications of the assumption that users selfishly act to 

maximize their own rewards. The authors construct a game theoretic model of the system and analyze 

equilibria of user strategies under several payment mechanisms. The idea is to encourage users to 

balance what they take from the system with what they contribute to the system. This is done by 

charging users for every download and rewarding them for every upload. The payment mechanisms 

differ primarily in the way that this amount of money is determined. 

A micro-payment mechanism is described in which a centralized server at the end of each time 

period charges an agent the amount of money proportional to the difference between the number of 

downloads and uploads. Since users do not like micro-payments (having to decide before each down­

load if a file is worth a few cents imposes mental decision costs), two variations of the basic scheme 

are also proposed. First is a quantized micro-payment mechanism in which users pay for downloads 

in blocks of b files, where b is a fixed parameter. At the end of a time period, the number of files 

downloaded by a user is rounded up to the next multiple of b, and the user is charged for these many 
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blocks. Second is a point-based mechanism, which uses an internal currency called "points" instead 

of micro-payments. Like quantized micro-payments, this mechanism lets users trade a fixed amount 

of dollars for a block of b points. Even though files are paid for with points on a per-file basis, where 

dollars are concerned, the mechanism is essentially quantized. 

The proposed micro-payment mechanism relies on a centralized entity (like an index server in 

Napster [9]) to keep track of all the file transactions in the network and accordingly charge the agents 

or nodes. In a completely distributed P2P network how the above payment mechanisms can be im­

plemented is not clear. Also, the authors consider only three levels of user strategies for download 

(uploads) - no downloads (no uploads), moderate downloads (moderate uploads), and heavy down­

loads (heavy uploads). It is concluded that both heavy downloads and uploads constitute a unique 

Nash equilibrium strategy for the agents. But how the users should behave exactly within each level of 

strategy, for both downloads and uploads, is not clear. 

6.6 Summary 

In this chapter, we have proposed a simple mechanism based on nodes' reputation to minimize the 

free-riding problem prevalent in P2P systems. The mechanism addresses the free-riding problem as it 

predicts that even for selfish users serving others is the best strategy. Game theory is used to predict the 

optimum (Nash equilibrium) strategies of selfish nodes such that their profits are maximized. Game 

theory is also used to provide valuable insight into the behavior of individual nodes, as well as the 

performance of the overall system. Interestingly, game theory provide us a proof for some of the 

intuitive results, such as the strategy of serving less than 50 percent of the times when everybody else 

behaves selfishly. 

The proposed game theoretic solution of the free-riding problem has several significant advantages 

- fairness, simple implementation, and ease of calculating optimum strategies. 
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CHAPTER 7. PROVIDING COMPLETE USER ANONYMITY 

7.1 Overview 

The goal here is to provide complete anonymity to the users of a P2P system, i.e., if a user initiates 

a request, say for data download or remote task execution, it should remain anonymous; likewise a 

user serving the request should not be traceable. For instance, in a commercial application, enterprises 

may be accessing resources residing at third-party computing facilities, e.g. delegating a computation-

intensive job or acquiring a large amount of data. Since the third party could have significant findings 

about an enterprise activity if the enterprise identity is disclosed, anonymous communication in such 

scenarios is as important as other security issues. 

Anonymity refers to the state that an entity is not identified in the communications with others. 

As discussed in [85], anonymous communication may have one or more of the following properties -

sender anonymity, receiver anonymity, and unlinkability. Sender anonymity means that when a mes­

sage is observed, the sender cannot be identified; receiver anonymity means that the receiver cannot be 

identified. Unlinkability means that the relationship between the sender and the receiver in the commu­

nication cannot be identified, even if sender anonymity or receiver anonymity cannot be guaranteed. 

Some anonymity mechanism may provide anonymity against one type of threat but not against an­

other type. For example, using a proxy between senders and receivers may provide sender anonymity 

against the receiver and vice versa, but may not provide any anonymity against an eavesdropper who 

can observe all messages from and to the proxy. 

In this chapter, we present a novel protocol for providing both client and server anonymity (and 

hence also unlinkability) in P2P networks. Here clients and servers are nodes in a P2P system. A node 

initiating a request for a service (or resource) is referred to as the client, and a node that serves the 

request is referred to as the server (for that particular request). The protocol assumes individual nodes 
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or users to be utility maximizing agents, and relies on an auction mechanism for trading of resources 

among them. The resources here can refer to data files, storage capacity, or computation power (i.e., 

CPU cycles), etc. The protocol is light-weight, and incentive-compatible. Incentive compatibility 

implies that the protocol takes into account the selfishness of users; as we would see the utilities of 

users are maximized by truthfully following the protocol steps. The authors in [86] also propose the 

idea of using economic incentives for building decentralized anonymity infrastructure and motivating 

users to participate in such a system. Moreover, unlike other schemes, our proposed protocol does not 

rely on any trusted centralized entity or require specialized encryptions to be performed by the users. 

Thus, the protocol incurs very low overhead on the system and is light-weight. 

We believe that the proposed scheme is easily deployable in a large untrusted Internet-scale setting. 

To the best of our knowledge, this is the first work that uses an incentive strategy to address the problem 

of both client and server anonymity in a single unified protocol. 

7.2 Related Research 

Anonymity for communication systems has been extensively studied, both for client-server and P2P 

computing models. Most of the existing anonymity protocols are for client-server computing model 

and hide the identity of the initiator (client). Initiator anonymity is provided using either rerouting 

based systems or non rerouting based systems. Crowds [87], Mix [91] and Onion-routing [94] employ 

rerouting based techniques to achieve initiator anonymity. In Crowds, anonymity on the World-Wide-

Web (WWW) is provided by grouping the users into large and diverse groups, so that Web-servers are 

not able to learn the true source of the request. The user or the initiator submits a request which is 

forwarded to a random member of the crowd, which then forwards the request to the end server. In 

Mix and Onion-routing, the sender determines the rerouting path and encrypts the route in a layered 

fashion so that each intermediate node only knows its previous and next hop node. 

Schemes which use a single hop intermediate rerouting path include Anonymizer [96] and Lucent 

Personalized Web Assistant (LPWA) [95]. An example of a non-rerouting based anonymous commu­

nication system is DC-Net (Dining Cryptographer's network) [97]. In this case a broadcast medium is 

used to achieve initiator and responder anonymity, and therefore it suffers from scalability issues. 
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In P2P publisher-subscriber systems, Freenet [88], Publius [98], FreeHaven [89] are examples 

of systems which provide publisher anonymity. Freenet is an adaptive P2P network application that 

permits publication and subscription of data in an anonymous fashion. Publius and FreeHaven use 

similar strategies for achieving publisher anonymity. While Publius splits the symmetric key used to 

encrypt and decrypt a document into n shares, FreeHaven splits the document into n shares. Any k of 

the n peers must be available to reproduce the key (in the first case) and the document (in the second 

case). While Gnutella [1] anonymizes only queries, GNUnet [99] provides anonymity for both queries 

and data transfers. 

The authors in [90] suggest using a trusted index server for generating the rerouting path. Moreover, 

there is a substantial amount of overhead involved in encryptions and decryptions. Furthermore, only 

client anonymity is provided by this protocol. Other existing work [103,100,101] that study anonymity 

in Chord also focus only on client-side anonymity and not server-side anonymity. 

The P5 [92] protocol uses a broadcast hierarchy to achieve both sender and receiver anonymity 

for peer to peer communications. The protocol uses public key cryptography with per-hop encryption 

and redundant noise packets to achieve a high degree of anonymity, thereby incurring a substantial 

overhead. 

7.2.1 Our Approach 

Figure 7.1 Figure depicting the intuition behind our anonymity providing strategy. 

There are two essential building blocks that we exploit in our approach to simultaneously provide 

both client and server anonymity. 

1. A peer-to-peer overlay topology and its associated routing mechanism that utilize intermediate 

nodes for routing a request (or response) from a client to server (or server to client). 

Indirection layer 

Client 
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2. An incentive scheme that makes it an optimal strategy for the intermediate nodes to keep infor­

mation about their neighboring hops secret. 

Our basic approach is illustrated using an example given in Figure 7.1, where a request from client 

C to server S is routed through 10 different intermediate nodes. In this figure, assuming that the above 

mentioned two building blocks work correctly, none of the nodes from 2 to 9 can know anything 

about the client or server. Moreover, node 1 upon receiving a request from C, cannot conclude if 

C is the actual client or just another intermediate node that itself received the request from someone 

else. (Note that since nodes exist in a virtual overlay topology, where each logical link might translate 

to several physical links, link sniffing by node 1 to determine whether C originated the request is 

also very difficult). Furthermore, an indirection layer introduced between nodes 10 and S creates an 

anonymous communication channel, which shields the identity of S from node 10. The functionality 

of the indirection layer is achieved in a completely distributed manner without relying on any trusted 

or centralized entity. 

The design of the indirection layer and that of an appropriate incentive scheme are explained in the 

subsequent sections. 

7.3 Model Assumptions and Limitations 

We assume a Chord-based P2P network substrate that is used for network connectivity and resource 

lookups. We assume that a node's Chord identity (or simply Chord ID) is derived by applying an 

appropriate hash function to its IP address, and thus remains fixed for the node. 

Some nodes in the network can be malicious, whose goal is to compromise the identity of the 

nodes that request and/or provide a service. Malicious nodes do not aim to maximize their profits (and 

in fact are prepared to incur loss), and can work in collusion, so as to identify who originated a request 

and who served it. We assume an internal, passive, and static adversary model [102], where - a) the 

adversary can observe lookup requests at compromised nodes but cannot observe the links (internal), 

b) the adversary can only observe the lookup requests but cannot modify them (passive) and c) the 

adversary chooses the nodes to compromise before the protocol starts (static). Assumptions (a) and 

(b) are generally true because the links under consideration are not actual physical links that can be 
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monitored. 

For a request initiated by a client, say C, for resource R, a network can be modelled as comprising 

of three types of entities - the client itself, the intermediate nodes (which forward the lookup message), 

and the server(s) capable of serving the request. We assume that a request for resource R can be met by 

any one of I servers, denoted by SR1,SR2,. .., Srz. (Here R denotes a name or ID that identifies the 

resource). We consider the process of looking up for and obtaining resource R as a one-shot game. 

We propose a light-weight auction-based protocol, called the anonymous lookup protocol, for pro­

viding complete anonymity in peer-to-peer networks. For demonstrating the working of the anonymous 

lookup protocol, we consider an example of the lookup process initiated by the client C for resource 

R, as described previously. Specifically the protocol provides that the client C and any of the servers 

SR1,SR2:. .., SR{ can access and provide resource R, respectively, without their anonymity being 

compromised. 

7.4 Details of the Anonymous Lookup Protocol 

I I Client node 

O Intermediate nodes 

® Terminal nodes 

Content index node (CIR) 

© Precedent nodes of CIR 

Server nodes 

Vickrey auction involving the terminal nodes 
Vickrey auction involving the precedent nodes 

o o o 

o o o 

O O O 

CIp 

o 

o o-

o o-
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J V 

O ^ 1 

- o  # '  

-o #' 

/ 

Client lookup phase Server registration phase 

Figure 7.2 Figure depicting the operation of the anonymous lookup protocol. 
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The anonymous lookup protocol consist of two phases, as depicted in Figure 7.2. The first phase is 

the server registration phase and the second phase is the client lookup phase. The server registration 

phase occurs before the client lookup phase. Below we describe the steps involved in each of these 

phases. However, before that it is helpful to provide some definitions. 

Definition 4. Terminal nodes: Terminal nodes are the Chord successors of the hash values of a re­

source name. A lookup message from a client is first routed to a terminal node, which then forwards it 

to the server. We assume that there are t terminal nodes for each resource. For resource R, its terminal 

nodes are denoted by TR^ Vi E {!,..., t} (for simplicity, we assume that t is a power of 2). If resource 

R hashes to Chord ID RI, then the t terminal nodes are the Chord successors of the following Chord 

IDs. 

o m 
{RI H—— * (i — l))mod{2m), Vi G {1, (7.1) 

Uniformly locating the terminal nodes around the Chord ring, as given by Equation 7.1, ensure that 

the lookup paths to different terminal nodes are as node disjoint as possible. 

The routing of a message from a client to a terminal node may go through other intermediate nodes. 

This list of intermediate nodes along with the terminal node is referred to as a request chain. For now, 

request chains to different terminal nodes of a resource are assumed to be node disjoint, as shown in 

Figure 7.2. 

Definition 5. Content index node: Content index nodes are the Chord successors of the hash values of 

the contents of a resource. (In practice, to reduce the cost of computing the hash function, one can use 

a digest of the contents instead). For resource R, its content index node is denoted by CIR. The routing 

of a message from a server S , where j € to a content index node may go through other 

intermediate nodes. This list of intermediate nodes along with the server is referred to as a service 

chain. For simplicity, service chains are also assumed to be node disjoint, as shown in Figure 7.2. 

7.4.1 Server Registration Phase 

Each of the servers, SR1 , SR2  , . . . ,  . Sr, , calculate the hash value of the contents of R. i.e., hash(Content(R)) .  

For example, if R is the name of a file then the input to the hash function is the file itself. The servers 
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then use the Chord lookup protocol to send a registration message MsgregiSter  to the content index 

node CIR. Intermediate nodes also store the IP address of the node, referred to as the precedent node, 

from which the message was received. 

Each registration message MsgregiSter contains the following information - hash(Content(R)), re­

source name or ID (R), marginal cost (MC totai)• 

hash(Content(R))  is used to route the registration message to CIR, the Chord successor of this 

value. 

The name R is used by the intermediate nodes and also CIR to know about the resource for which 

registration is being done. 

MCtotai contains SR^S marginal cost MCsR. of providing the resource. An intermediate node 

on receiving the registration message updates MCtotai by adding its own marginal cost to the received 

value. 

CIR receive I  such registration messages, and thus knows that resource R can be obtained through 

any of the nodes that sent the registration message. These nodes comprise the set of precedent nodes 

of CIR, and are represented by PciR-

CIR then uses the resource name R and Equation 7.1 to locate the corresponding terminal nodes 

TR^I E {1,..., i}. The terminal nodes are informed by CIR that resource R can be accessed through 

it. 

The nodes in PciR do not include the MCtotai value in the registration message they send to CIR. 

Once a request for resource R is received by CIR from the terminal nodes, CIR holds a second price 

sealed-bid auction (also cal led the Vickrey auction) with al l  i ts  precedent  nodes as the bidders.  CIR 

obtains the resource from the precedent node that offers to provide the resource at the lowest cost. 

The service chain containing the lowest cost bidder is called the winning service chain WSC. It must 

be noted that MCtotai represents the minimum price that must be paid by CIR in order to obtain the 

resource from the corresponding service chain. 
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7.4.2 Client Lookup Phase 

The client C before initiating the lookup process estimates its utility (JJR )  of the resource R to 

calculate the maximum price that it can offer for the resource. C then sends a separate lookup message 

towards all the terminal nodes of resource R, such that at most one message is sent out for all the 

terminal nodes that require going through the same next hop neighbor - the terminal node selected is 

one which is closest to that neighbor. As a result, the number of terminal nodes that are contacted 

during a client lookup phase may be less than the total number of terminal nodes for a resource, and 

therefore, the number of request chains formed, denoted by k, are typically less than t. Thus, we have 

k  < t .  

Together the parallel lookup messages towards different terminal nodes constitute a single lookup 

process initiated by client C for resource R. Each lookup message Msgi00kUp contains the following 

information - address of one of the k terminal nodes resource ID (R), maximum price offered 

(Pc), marginal cost (MCtotai), request ID Reqidpubhc). 

REQIDPUBUC identifies the lookup process such that CIR on receiving the resource requests know 

that they pertain to the same lookup process. Thus, the same value of Reqidpuuic is included in all the 

lookup messages. 

MCtotai contains C's marginal cost MCc• An intermediate node upon receiving the lookup mes­

sage updates MCtotai by adding its own marginal cost to the received value. 

An intermediate node on receiving a lookup message routes it to the next hop neighbor, and this 

process continues till the message reaches the desired terminal node, which in turn contacts CIR to 

obtain the resource. CIR receive K such requests and from the REQID^uic values knows that all the 

requests pertain to the same lookup process. CIR then holds a second price sealed-bid auction (also 

called the Vickrey auction) with all the terminal nodes as the bidders. CIR provides the resource to 

the terminal node that offers the highest price. The request chain containing the highest bidder, i.e., the 

winning terminal  node,  is  cal led the winning request  chain WRC. 
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7.4.2.1 Using Vickrey Auction for Resource Trading 

As explained above, CIR holds two separate Vickrey auctions - one with the terminal nodes as the 

bidders, and the other with the nodes in PciR as the bidders. 

In Vickrey auction, the highest bidder wins the auction, but the price that it has to pay is equal 

to the second highest bid. Vickrey auction in its most basic form is designed to be used by altruistic 

auctioneers, which are concerned with overall system efficiency or social good as opposed to self-gains. 

Self-interested auctioneer is one of the main reasons why Vickrey auction did not find widespread 

popularity in human societies [65]. 

Since, CIR (the auctioneer) behaves selfishly and tries to maximize its profit, the auction process 

involving the terminal nodes (precedent set nodes) needs to ensure the following. 

* Selecting the highest (lowest) bidder is the best strategy for CIR. 

• The price paid by the highest (lowest) bidder is indeed equal to the second highest (lowest) bid, 

i.e., CIR should reveal true second highest (lowest) bid to the highest (lowest) bidder. 

» Collusion among CIR and the bidders should not be possible. 

In view of the above requirements, we use a two-phase Vickrey auction protocol, which was pro­

posed and evaluated for its correctness and robustness in Chapter 4. 

7.4.2.2 Secure Vickrey Auction to Determine the Winning Terminal Node 

We now explain in detail the auction process involving the terminal nodes only. The auction process 

involving the nodes in PciR is carried out using exactly the same procedure, except for the fact that the 

winner now is the one with the lowest bid, i.e., cost value. 

We denote the highest and second highest bids by Mi and M%, respectively. The price offered by 

a terminal node to CIR is equal to Pc — MCtotai• (On the other hand, the bid offered by a node in 

PciR is simply MCtotai)- The amount of profit made by the WRC is equal to (Mi - M%). This profit 

is shared fairly among the nodes of the WRC (and the client) in proportion to their marginal costs, i.e., 

nodes with higher marginal costs get a higher proportion of the total profit, and vice versa. 
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CIR employs a two-phase Vickrey auction to select the highest bidder and determine the price at 

which the resource is provided. In the first phase, the bidders send encrypted copies (E(randKeyi; &,)) 

of their bids in message Msgud to CIR. Here E(randKeyf, bi) is the encryption of bid value bi of 

terminal node using a randomly chosen secret key randKeyi. Each message Msgud also includes 

the Reqidpubiic value received by the terminal nodes, so that CIR can determine that the bids pertain 

to the same lookup process. The received encrypted bids are sent by CIR back to all the bidders in 

message Msgud-repiy Since after receiving Msg^d-repiy, the bidders have encrypted copies of all 

the bids (total k such bids), CIR is unable to (undetectedly) alter existing or add fake bids. 

In the next and last phase of the auction, each bidder after receiving the message M sgud-reply, 

sends its secret key in message Msgkey to CIR. The received key values are now sent by CIR back to 

all the bidders in message Msgkey-repiy At the end of this phase, CIR and all the bidders are able to 

open the encrypted bids and find out about the highest and second highest bids. 

CIR then sends a message Msgcert to the winning terminal node certifying that it has won the 

auction. The received certificate is forwarded along the reverse lookup path until it reaches C. C then 

finds out that the resource has been looked up and is available at a price within its initial offer of Pc-

Msgcert contains the following information - highest bid Mi, second highest bid M%, total marginal 

cost MCtotai • (MCtotai is received by CIR in Msgbid)• The corresponding Msgcert message in the 

auction involving the nodes in PciR include only the information about the lowest and second lowest 

bid. 

The information in messages Msgcert and Msgi0 0kup (Msgregister) allow the intermediate nodes, 

including the winning terminal node, to calculate their reward for being part of the WRC (WSC). The 

knowledge of the auction results also enables C to determine the price that it finally has to pay for R. 

The calculation of the exact payoffs received by nodes are discussed in the next section. 

At the end of the two auctions, the resource is obtained via the lowest cost precedent node (from 

the server on the WSC), and provided to the terminal node on the WRC. The terminal node sends the 

resource to the client along the reverse lookup path. (Since the nodes on WSC and WRC have to both 

receive and send the contents of resource R, we assume that the MsgregiSter and Msgi00kUp messages 

also include the size information of resource R. This enables the intermediate nodes to calculate their 
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M SQregister hash{Content(R)),  R, MCtotai 

Msgbid E(randKeyf, bi),R 

M sgbid—reply UE(randKeyï,  bi),R 

M sgkey randKeyi,  R 

Msgkey-reply U  randKeyi,  R 

M SgCert M [ , M ^ , R  

Table 7.1 Various messages comprising the server registration phase and Vickrey 
auction involving the nodes in PciR • The resource name R is included 
in all the messages so that the receiver can correctly establish the con­
text for the received message (for example it is possible for CIR to be 
the content index node for some other resource also). M[ and M.'2 are 
the lowest and second lowest bids, respectively. 

M sgiookup ! P-i Pc > MCtotai J Reqidpublic 

Msgbid E(randKeyi;bi),MC to tai,  Reqidp u b i ic  

M sgbid—reply UE(randKeyi; bi),  Reqidp u b i ic  

Msgkey randKeyi,  Reqidp ubuc  

M Sgkey— r eply UrandKeyi,  Reqidp ubiiC  

M SgCert M\, M2 ,  R&gidpublia M Ctotai 

Table 7.2 Various messages comprising the client lookup phase and Vickrey auc­
tion involving the terminal nodes. The value Regidpubiic is included in 
all the messages so that the receiver can correctly establish the context 
for the received message. 

marginal cost values for participating in the lookup transaction. Note that the client can only estimate 

the size of resource R). 

Figure 7.3 summarizes the exact sequence of steps followed in the proposed anonymous lookup 

protocol. For an easy reference, the various messages used during the server registration and client 

lookup phases, along with the information they contain, are also summarized in Table 7.1 and Table 

7.2, respectively. 

7.4.3 Distributing Reward to Nodes in WRC and WSC 

For any node in WRC, say x, its payoff Payx is calculated as follows. 

= MC, + * (Mi - Mg)) (7.2) 
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/* SERVER REGISTRATION PHASE START */ 

Step 1: Server(s) with resource R register themselves by sending a registration message Msgr e g ister to the 
content index node, which is the Chord successor of hash(ContendR)) 
- Intermediate nodes update the value of M Ctotai before forwarding the registration message 
- Registration messages reach CIR, which is the content index node for resource R. It must be noted that 
the registration messages received by CIR do not include in them the MCtotai values 
/* CIR now knows that resource R can be obtained through its precedent nodes, which are represented by 

*/ 
Step 2: CIR uses the resource name R to locate the corresponding terminal nodes TR^H € 

Step 3: The terminal nodes are informed that resource R can be accessed through CIR 

/* SERVER REGISTRATION PHASE FINISHES */ 

/* CLIENT LOOKUP PHASE START */ 

Step 4: Client initiates the lookup process by sending a lookup message Msgi00kup towards 

TRiVi 6 {1, 
- Intermediate nodes update the value of MCtotal before forwarding the lookup message 
- Lookup messages reach the terminal nodes 

/* VICKREY AUCTION STARTS (involving the terminal nodes) */ 
/* Phase I */ 
Step 5: Terminal nodes on receiving Msgi0 0KUP  send Msgud to CIR 

Step 6: CIR waits for k Msgud messages (i.e., bids) or till some maximum time r 
- Bids are identified as belonging to the same lookup process by using the value Reqidpunic 

Step 7: Server sends message Msgud-repiy to the terminal nodes 
- After the above step the bidders have encrypted copies of all the bids 

/* Phase II */ 
Step 8: Terminal nodes send their secret key to CIR in message MSG^EY 

Step 9: CIR replies with a message Msgke y -rePIY  distributing the secret keys among the bidders 

/* VICKREY AUCTION FINISHES *f 

/* At the end of the above Vickrey auction, CIR knows the maximum price that it can offer for resource R. It 
then solicits bids from its precedent nodes. It must be noted that these bids correspond to the minimum price 
at which the precedent nodes can provide the resource */ 

/* VICKREY AUCTION STARTS (involving the nodes in PCiR) */ 

/* Phase I */ 
Step 10: Nodes in PciR  send MSGBID, to CIR 

Step 11 : CIR waits for L Msgbid messages (i.e., bids) or till some maximum time r 
- Bids are identified as belonging to the same lookup process by using the resource name R 

Step 12: CIR sends message Msgud-repiy to the bidders 
- After the above step the bidders have encrypted copies of all the bids 

/* Phase II *1 
Step 13: Bidders send their secret key to C I R in message M s g k e y  

Step 14: CIR replies with a message Msgke y -reP iy distributing the secret keys among the bidders 
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Step 15: CIR sends message Msgcert to the precedent node with the lowest bid value. The receiving node 
in turn propagates the message along the service chain until the message reaches the server 

/* By using the contents of messages MsgTegiSter and Msgcert, nodes along the WSC know the payoff they 
have to make to their precedent nodes */ 
Step 16: The server, which is part of the WSC, supplies the requested resource. The resource is again 
propaga ted  a long  the  WSC unt i l  i t  reaches  CIR 

Step 17: CIR then sends message Msgcert  and resource R to TRW R C .  This message, along with the 
resource, is sent to C using the reverse lookup path 

Step 18: C after keeping its profit share gives the remainder of its initial offer to the next hop node along the 
WRC. The next hop node then keeps its payoff amount and sends the remaining to its next hop, and so on. 
This  process  i s  repea ted  unt i l  CIR rece ives  a  payoff  o f  M 2  f rom TR W R C  

Step 19: CIR gives a payoff of M'2  to the winning precedent node, i.e., the one with the lowest cost of 
providing the resource. (We assume that Mg — M'2 > MCCIR, thereby giving a net profit to CIR). Each 
node along the WSC after keeping its payoff amount sends the remaining to its precedent node. This process 
is repeated till the server that is part of the WSC receives its payoff 
/* CLIENT LOOKUP PHASE FINISHES */ 

Figure 7.3 Anonymous lookup protocol steps 

SCj = jth service chain 

RCj = i'h request chain 

PayT = 13.33 (= 10 + (10/30)»(70-60)) Pay , = 13.33 (= 10 + (10/30)*(70-60)) Pay,.= 6.1 (=5 + (5/45)*(55-45)) Pay^= 48.9 
Initial offered price 

RC SC 

Minimum cost at 
which the server 
agrees to provide 
the resource 

90 
sc, RC 

Profitc = 3.33 
(=( 10/30)*(70-60)) 

20 

sc RC 

Two phase Vickrey auction 
where TR is the winner 

Two phase Vickrey auction 
where node 1 ' is the winner 

(Values inside the enclosed region correspond to bids in the respective auction) 

Figure 7.4 An example illustrating how the payoffs are distributed among the 
WRC and WSC nodes based on their marginal costs. 
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The profit share of C, i.e., the portion of its initial offer that it saves or gets to keep, is similarly 

calculated as given below. 

frofitc = * (Mi - Ms)) (7.3) 
M Ctotai 

Likewise, let M[ and M'2 be the lowest and second lowest bid, respectively, in the auction involving 

the nodes in PciR- Then for any node in WSC, say x, its payoff Payx is calculated as follows. 

= MC, + * (M^ - M{)) (7.4) 

The payoff received by C I R  is equal to, 

PayciR = M2 - M'2 (7.5) 

The example depicted in Figure 7.4 illustrates the payoffs received by different nodes in WRC 

and WSC. Both WRC and WSC are darkened in the figure. Numbers inside the nodes represent their 

marginal cost values. The payoffs to the nodes on WRC and WSC are also indicated in the figure. For 

example, payoff to node 1, which is part of WRC, is 13.33 (=10 + (10/30)*(70-60)), and the payoff to 

node 1 ', which is part of WSC is 6.1. C's profit share is 3.33 (= (10/30)*(70-60)). Thus, C effectively 

has to pay only 86.67(=100-10-3.33) for a resource whose utility to it (after deducting the marginal 

cost) is in fact 90. Therefore, the use of Vickrey auction ensures that everyone, including the client, 

server, terminal nodes, and intermediate nodes constituting the WRC and WSC benefit, i.e., earn more 

than their marginal costs of participating in the lookup process. This potential of earning higher profits 

motivate nodes to share their resources and forward messages for others. 

7.5 Anonymity Analysis 

In the anonymous lookup protocol we use the fact that nodes are selfish, and in order to maximize 

their payoffs they have incentive not to reveal information about their precedent nodes (which send the 

lookup or registration messages) to their next hop neighbors. This is because otherwise the precedent 

and next hop nodes can directly negotiate among themselves and by-pass the nodes in-between, and 

consequently there will be less nodes with whom the profit will have to be shared. Our incentive-

based strategy of lookups in Chord allows us to exploit this inherent property of information hiding, 
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A: Adversary 

u: Total number of adversaries (in case of more than one) 
d{ij): Distance (number of identifiers) between nodes i and j 

dbinaryi^ j )  •  Binary representation of distance between nodes i and j 

L: The event that the adversary does not lie on any lookup chain 
S(x): Anonymity set for event x 

d(S): Degree of anonymity on set S 

Figure 7.5 Notations for anonymity analysis 

and anonymity is thus naturally provided by the proposed protocol. Also, note that at no point in the 

operation of the protocol, the identities of the client or server(s) are revealed - none of the messages 

contain this information. Even the next hop neighbors of C (Sr, ) do not know that the request was 

originated (served) at C (5%). As can be seen the functionality of the indirection layer (as described 

in Section 7.2.1) is implemented by nodes between the terminal nodes and server nodes. The nodes 

constituting the indirection layer are configured during the server registration phase. 

Unlike in the traditional Chord protocol (or any other DHT based system), where the successor 

nodes of keys (referred to as the terminal nodes in our case) either directly store the key value or the 

address of a node containing the key value, we require the terminal nodes to store the address of the 

content index node. This is important as we want to provide both client and server anonymity, and 

otherwise server identity is always known to the terminal nodes. One might argue that a single request-

and service-chain might also be used (by using a single terminal node and registering the server(s) 

directly at that node) to provide both anonymity and resource trading. However, in such a scenario 

both the client and server(s) would have to speculate about the other's offer and also how much the 

intermediate nodes would charge for routing. Moreover, the intermediate nodes, in order to maximize 

their profits, would have to speculate about the cost value they should reveal while still ensuring that 

the offer received by the auctioneer (content index node) from the client side is more than the minimum 

price asked by the service chain. To avoid such speculations (and counter-speculations) and enable fast 

resource trading, we use Vickrey auction. Vickrey auction is used on both the client and server side to 

decide how the resource is eventually priced. In summary, the two layer indexing scheme, and using 
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the content index node, allows us to carry out the Vickrey auction protocol, and separate the client side 

of the lookup process from that of the server side. 

After the informal reasoning given above, we now formally investigate the anonymity provided by 

the proposed anonymous lookup protocol. Since the anonymous lookup protocol is symmetric on both 

client and server side and resembles an "hour-glass" model, below we analyze client anonymity only. 

Similar arguments would apply for proving server side anonymity as well. Also, to make the derived 

equations more tractable, we set N equal to 2m, where m is the number of bits in a Chord ID. However, 

the plots given in Figures 7.7 and 7.8 are for much smaller values of N, and even these small values 

provide a high degree of anonymity. We use the following metrics - Average Anonymity Set and Degree 

of Anonymity, which are commonly used to evaluate the strengths of an anonymous system. Notations 

that are used in our analysis are summarized in Table 7.5. 

Definition 6. Average Anonymity Set: Anonymity set, represented by S, is defined as the set containing 

all possible initiators of a lookup request as perceived by the adversary set. The average (or expected) 

anonymity set is the expected value of\S\. 

Definition 7. Degree of Anonymity:We use Entropy [104] to measure the degree of anonymity of a 

sys t e m .  I f X  i s  a  r a n d o m  v a r i a b l e  r e p r e s e n t i n g  t h e  i n i t i a t o r  o f  a  l o o k u p  c h a i n ,  t h e n  t h e  e n t r o p y ,  H ( X )  

is a measure of the information content of the probability distribution of X. More formally, 

H ( X )  =  —  P r ( X  = x) log2 Pr(X = x) (7.6) 
xes 

Using this definition of entropy, we calculate the degree of anonymity on S as, 

j ( a\ ' )aposteriori 
d e 9( t>)  =  r r ( Y v  

11 ) apriori 

- J] Pr(X = x) log2 Pr(X = x) 
I€S (7.7) 

log2(JV- 1) 

The apriori entropy corresponds to the information that the adversary has before observing any 

lookup request, and therefore it can only exclude itself from the anonymity set. In the following 

subsections we consider the possible threat models that are relevant for the anonymous lookup protocol. 
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Yi 

C 

Figure 7.6 Multiple request chains initiated by C 

7.5.1 Threat Model A (Single Adversary) 

From the perspective of the adversary A, the anonymous lookup protocol provides a high degree of 

anonymity to the client C, as summarized by the following theorem. 

Theorem 5. The average size of the anonymity set for C is at least 2m — m(l — 0.5m) 

Proof The average size of the anonymity set is given by, 

From Lemma 6, we can say that request chains are node disjoint, i.e., at most a single request chain 

passes through A. Therefore, A will be on a request chain iff it lies on one of the yi regions (as indicated 

in Figure 7.6). The region y; is the Chord distance along the clockwise direction between the ith finger 

of C and the terminal node (when there is a terminal node between the ith and (t + l)th fingers), which 

is closest to that finger. From the property of Chord, the number of hops in the region y, are log(y,;). 

So the probability that A lies on one of these regions (i.e., y,s) is given by, 

2(|S|) = fr(^).|S(6)|+fr(6).|S(6)| (7.8) 

Now to derive Pr(L) we use the following lemma. 

Lemma 6. For the lookup initiated by C, A lies on at most a single request chain. 

Proof. Refer to Appendix 8. • 
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log(Ew) log(Ew) 
™= - f - =  

For the worst case (best case for the adversary), we can say that 

i=k 
'og'Ew) logW los(2m) m 

2 m — 2771 2m 2m 2m ' 

Now assuming that the adversary lies on one of the request chains and uses its q ih  finger for routing 

the request, we get the following expression for the average size of the anonymity set. 

WD = (1-^)1^)1 + ̂ 1^)1 

=  ( ! - # ) ( " - ! ) +  ( 7 - 1 0 )  

The average size of the anonymity set is a function of q, and the minimum value of |E(S)| is 

obtained when q = m (adversary uses its mth finger to route the lookup). Substituting in 7.14, we get 

the following lower bound. 

E { \ S \ )  >  2 m - r n ( l - 0 . 5 m )  ( 7 . 1 1 )  

• 

The auctioneer ( C I R )  acting as an adversary is a specific case of this threat model, and has similar 

analysis for the average anonymity set size. The auctioneer only know the identity of the terminal 

nodes through which it receive the lookup requests. 

7.5.2 Threat Model B (Multiple Adversaries) 

It is possible to have multiple adversaries in a network that can collude, i.e., share their information, 

in order to determine from where the request originated. Let there be u number of such adversaries. 

The robustness of the proposed protocol against the multiple adversary scenario is demonstrated by the 

following lemma. 
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Lemma 7. Adversaries lying on all the request chains cannot collude to further reduce the size of the 

anonymity set than that available with the most downstream adversary. 

Proof. Consider a scenario in which the number of adversaries in the system is so large that there is 

an adversary on all the k request chains. We need only consider the most downstream adversary in 

each of the request chains, since they are closest to the client. (In a Chord ring, a node has more in­

formation about the region of the identifier space that is closer to it than about a far away region). Let 

A\, A2,..., Ak be k such adversaries lying on request chains 1,2,... ,k, respectively. The correspond­

i n g  a n o n y m i t y  s e t s  a n d  f i n g e r  t a b l e  e n t r i e s  u s e d  b y  t h e s e  a d v e r s a r i e s  a r e  r e p r e s e n t e d  b y  S i ,  5 2 , . . . ,  

and qi,q2,... ,qk, respectively. Without loss of generality, let q\ > q? > ... > %. 

From the property of the Chord routing protocol and also as given in [103], we have that qi least 

significant bits of the adversary Ai are the same as the q\ least significant bits of the client C. Therefore, 

we will have |Si| = 2m~qi. Similarly, for any j, where 2 <= j <= k, we have that qj least significant 

b i t s  o f  the  adversary  A j  are  the  same as  the  q j  l eas t  s igni f icant  b i t s  o f  the  c l ien t  C ,  and  hence  \ S j \  =  

2m~qi. But since f/i > <72 > - - • > these qj bits would be a suffix of the least significant q\ bits of 

A \ .  

Now it is easy to see that, S\ (~) S2 D • • • D Sk = Si. In other words, the most downstream adver­

sary cannot further reduce its anonymity set size by using the information available with the adversaries 

on other chains. • 

Based on the above observation we now calculate the expected size of the anonymity set for multi­

ple adversaries. 

Theorem 6. The average size of the anonymity set is at least 2m — um( 1 — 0.5m) 

Proof. Again we have, 

E(\S\) = Pr(L).\S(L)\+Pr(L).\S(L)\ (7.12) 

For a large value of N, 

f r W  =  ( 1 - ^ r  ( 7 . 1 3 )  

• 
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Using the approximation (1 — x)u rs 1 — itx we have the following expression for the average size 

of the anonymity set. 

From Lemma 7, the anonymity set of the most downstream adversary (closest) to the client is 

contained (subset) in the anonymity sets of all the other adversaries. Therefore, q in the above equation 

is the finger used by the most downstream adversary to route a lookup. Substituting q = m, we get a 

lower bound on the average size of the anonymity set. 

7.5.3 Threat Model C (Multiple Adversaries Populate the Finger Table of C) 

We now consider a special threat model in which multiple adversaries are the first-hop nodes of C. 

Since from Lemma 6 we know that the request chains are disjoint, two or more first-hop adversaries 

receiving a lookup request can accurately identify the client C. However, the probability of such an 

event happening is very low, as shown below. 

Lemma 8. The probability of two or more adversaries being the first hop nodes of C is very small. 

Proof. From Lemma 6, we know that the request chains are node disjoint. Therefore, if there are k 

request chains, then there are exactly k first-hop possible positions that the adversaries can occupy. Let 

X be the event that two or more adversaries occupy these k positions, Y be the event that no adversary 

lies on these k first-hop positions, and Z be the event that exactly one adversary lies on one of these k 

first-hop positions. 

(7.14) 

£(|S|) > 2m - um(l - 0.5m) (7.15) 

Then, 

Pr{X) = 1 - Pr{Y) - Pr{Z) (7.16) 

For a large value of N, 

N - k 
fr(y) « (-^r (7.17) 
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Therefore, 

^ (7-18) 

1  n  ( » - i ) ^ \  
~N ~ ~N ~N 

u2k2 

(7.19) N 2 

For large networks, we typically have (N >> ku) and hence Pr(X) is very small. (The maximum 

possible value of k is only m). • 

7.5.4 Degree of Anonymity Calculation 

Based on the average anonymity set size values calculated in the previous sections, we now give a 

generalized expression for the degree of anonymity for the proposed anonymous lookup protocol. 

deg(S) = 
H{X)aposteri(yri _ log2(2m - W7l{ 1 - 0.5™)) 

apriori log2(2m) 
(7.20) 

Number o f  adversaries(u) for n=1000 

Figure 7.7 Variation of degree of anonymity with size of adversary set when 
N = 1000. 

The plots of Equation 7.20 show that a very high degree of anonymity is achieved even when a 

significant fraction of the nodes are controlled by adversaries. Figures 7.7 and 7.8 show the variation 

of degree of anonymity with the number of adversaries present in a network of size 1000 and 50000, 
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Number of adversaries(u) when n=50000 

Figure 7.8 Variation of degree of anonymity with size of adversary set when 
N = 50000. 

respectively. For the case when N = 50000, deg(S) is as high as 0.8 even when 6% of the nodes are 

malicious. In information theoretic terms, this means that about 80% of the bits of the client's identity 

remains hidden from the adversaries. Moreover, our analytical expression for the degree of anonymity 

is independent of the number of request chains and the number of terminal nodes, with the implication 

that irrespective of the number of request chains initiated by a client, a very high degree of anonymity 

is achieved. 

7.6 Protocol Overhead 

We must admit that the proposed protocol incurs some extra over overhead, which is mainly due to 

the following two reasons. 

1. Message communication involved in formation of request chains and service chains. 

2. Use of monetary transactions among nodes. 

3. Sending of data using multiple hops from the selected server to the client. 

4. Computations involved in message encryption and decryption to achieve message non-repudiation 

The maximum message processing overhead is incurred by C I R ,  which is 0(k +  / ) .  T h e  m e s s a g e  

overhead of the client is 0(log k). The number of messages processed by an intermediate node and a 

server are 0(1). The maximum number of nodes involved in the lookup process are 0((k + l) *log TV), 
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where k and I are the number of request chains and service chains, respectively, and O (log TV) is the 

length of each chain. Thus, we can see that the protocol incurs a reasonable overall message overhead. 

Several researchers have built light-weight payment mechanisms [28, 27, 26] for P2P systems. 

These mechanisms can easily be integrated with the anonymous lookup protocol. Also, in Chapter 

4, we explained how reputation can be used as a substitute for reward, thus obviating the need for an 

expensive electronic infrastructure for money payments. Therefore, we believe that the requirement of 

monetary transactions by our protocol should not impose a significant overhead on the system. 

Moreover, we are exploring ways for enhancing the protocol to minimize the number of hops 

required to send data from server to client. The strategy will be to send data separately, rather than 

sending it  with Msg c e r t -

7.7 Summary 

In this chapter, we presented the anonymous lookup protocol that provides high degree of client 

and server anonymity (and hence also unlinkability) in P2P networks. The protocol builds a distributed 

anonymity infrastructure by implementing an incentive scheme that motivate nodes to participate in 

the system and also maintain secrecy about the identities of nodes they interact with as part of any 

transaction. The protocol uses an auction protocol for trading of network resources and ensure that 

the rewards received by network nodes are maximized if they truthfully follow the protocol steps. 

Moreover, the protocol is light-weight as it does not rely on any trusted centralized entity or require 

specialized encryptions to be performed by the nodes. 

To the best of our knowledge this is the first protocol that uses an incentive strategy to provide 

sender as well as responder anonymity in large-scale P2P networks. Since the underlying network 

model assumes that all nodes behave selfishly (and some even maliciously), we believe that the protocol 

is robust enough to be déployable even in a large-scale Internet setting. 
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CHAPTER 8. CONCLUSIONS AND OPEN PROBLEMS 

In this dissertation, we proposed strategies on how resources can be shared in large Internet-scale 

P2P systems, assuming that individual nodes behave selfishly in a game-theoretic sense. Specifically, 

we proposed a model (based on the work of Nisan et. al.) for developing protocols for selfish P2P 

networks, and achieved the following: 

Provided a solution for enabling distributed computing by harnessing idle computing resources, 

such as CPU cycles, in P2Pnetworks taking into account nodes' selfishness. 

Developed a mechanism such that resources like data and routing bandwidth can be priced and 

traded in P2P networks. 

In addition, we presented a novel reputation management framework for large-scale P2P systems. 

Therein, we demonstrated the mechanisms for and feasibility of using reputation as a substitute for 

actual currency, and described how reputation computation can be carried out when nodes behave self­

ishly (and even maliciously). The framework can be easily extended to mimic the actual monetary 

transactions taking place among pair of nodes. The system of virtual currency implemented is com­

pletely distributed, robust, and light-weight. Moreover, we used game theory and its notion of Nash 

equilibrium to model the behavior of selfish nodes and calculate their optimum strategy for participa­

tion in a P2P network such that the problem of free-riding is minimized. The proposed game theoretic 

model minimizes the free-riding problem and has several significant advantages - fairness, simple im­

plementation, and ease of calculating optimum strategies. Furthermore, as part of our effort to provide 

anonymity to P2P users, we developed a novel protocol to achieve both sender and receiver anonymity. 

The protocol is inherently anonymous, light-weight, and incentive-compatible, and is easily déployable 

in large-scale P2P systems. 

There are several remaining open issues and problems that can be pursued in future to extend the 
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work presented in this dissertation. 

1. First, one can explore the applicability of game theory for modelling heterogeneous P2P sys­

tems and for reputation management. As P2P systems gets bigger and provide more value-added 

services, it seems reasonable to assume that peers would have more incentive to behave self­

ishly. Moreover, game theory is an ideal tool for modelling such a system with selfish users. 

Therefore, P2P systems appear to be a natural playing field for various game theoretic ideas and 

formulations. However, one must be careful when using game theory, since some of the com­

monly used assumptions in game theory, such as knowledge about all the players in a game, do 

not necessarily hold true in P2P systems. 

2. Second, for systems such as CompuP2P to be commercially successful, they must provide a 

range of qualities of service for various parameters, such as security, fault-tolerance, cost, delay 

and throughput guarantees, etc. A market economy will not work if buyers do not know the 

quality of what they are buying, or sellers cannot ensure the quality of what they are selling. In 

networking, one would like various types of assurances regarding bandwidth, (end-to-end) delay, 

etc., and be willing to pay based on the strength of the assurance. These assurances may range 

from weak hints to strong guarantees. 

3. Third, although we included "security" as one of the quality-of-service parameter above, in 

practice, security is the most important issue if P2P systems are to become pervasive and replace 

the existing client-server systems. Security issues for P2P systems are the same that arise in any 

distributed computing environment - ranging from authentication, authorization, confidentiality, 

privacy, anonymity, code and data misuse (as in the context of CompuP2P), malicious processing 

(such as virus uploads), malicious routing, etc. Although solutions (in some form at least) exist 

to address the above security issues, relying on technologies such as PKI, cryptography, proof 

carrying codes [105], digital signatures [106], etc., implementing these solutions in a completely 

distributed manner to be useful for P2P systems is still a real challenge. 

4. Last, but not the least, it is important to understand the topologies formed by selfish nodes, 

specifically the factors governing such decisions, and how accurately they can be predicted. As a 



www.manaraa.com

153 

simplification, the work presented in this dissertation largely assumes that nodes truthfully follow 

a given protocol for P2P network formation. It might be interesting to study what happens when 

nodes behave selfishly even while selecting their neighbors. 

In conclusion, we hope that this dissertation serves as a useful step in the direction of achieving true 

Internet computing. The issues raised and the solutions provided should be helpful to system designers 

for building robust, scalable, distributed, and light-weight Internet computing architectures. 



www.manaraa.com

154 

APPENDIX 

We define function d ( )  to take as input two Chord IDs (or nodes) and return the Chord distance 

between them. In other words, d(xy) returns the Chord distance between two nodes x and y. 

Lemma 9. For the lookup initiated by C, some node, say a, lies on at most a single request chain. 

Proof. Two cases can arise, 

Case 1: d(Ca) ^ 2m_1: Since only one lookup request is sent for all the terminal nodes that are at 

a Chord distance greater than 2m_1 from C (all these terminal nodes require going through the m — Ith 

finger table entry), a can be on the lookup path to at most one terminal node. 

Case 2: d(Ca) < 2m_1: Let 2Î_1 < d(Ca) < 2®_1, i.e., the Chord ID of a lies between the ith 

and jth finger table entry of C. a can only be on the lookup paths to terminal nodes that lie in the same 

range, i.e., the ith and jih finger table entry of C. 

Without loss of generality, let a be on the lookup paths to two terminal nodes TRi and TRj (1 < 

i,j < k), and d(CT^) < d{CT^). Then we must have that d(CT%) < d(Ca) (because the lookup 

path to a terminal node lying between the itfl finger table entry and a would not pass through a). But 

since at most a single request is sent out for all the terminal nodes that go through the same next hop 

neighbor - the terminal node selected is one which is closest to that neighbor. Therefore, C sends a 

request towards only . Hence, we have a contradiction that a is on the lookup path to both and 

TRj. 

• 

The following is a direct result of the above lemma. 

Corollary 1. For a given lookup transaction, at most a single request chain passes through any node, 

except for the originator of the lookup request. 
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